Acest articol sau această secțiune are bibliografia incompletă sau inexistentă. Puteți contribui prin adăugarea de referințe în vederea susținerii bibliografice a afirmațiilor pe care le conține.
În algebră, un corp se referă la o mulțime pe care sunt definite niște operații binare numite adunare, scădere, înmulțire și împărțire, cu aceleași proprietății algebrice ca operațiile corespunzătoare pe numerele reale (cu posibila excepție a comutativității înmulțirii; a se vedea mai jos).
Se numește corp un triplet în care este o mulțime cu cel puțin două elemente, iar și sunt două operații pe (numite „adunare”, respectiv „înmulțire”) satisfăcând următoarele trei axiome:
Grupul se numește grupul aditiv al corpului, iar grupul se numește grupul multiplicativ al elementelor nenule ale corpului.
Exemple
Mulțimea (respectiv ) a numerelor raționale (respectiv reale) înzestrată cu operațiile de adunare și înmulțire are o structură de corp comutativ, numit corpul numerelor raționale (respectiv corpul numerelor reale).
Inelul al claselor de resturi modulo p este corp comutativ dacă și numai dacă p este un număr prim. Reciproc, orice corp finit al cărui cardinal p este prim este izomorf cu .
Subcorp
Definiție
O submulțime a unui corp se numește subcorp al lui , dacă operațiile algebrice definite pe induc pe operații algebrice, împreună cu care este corp.
Dacă este subcorp al lui , atunci se numește extindere a lui și se notează sau .
Caracterizare
O submulțime nevidă a unui corp este un subcorp a lui dacă și numai dacă:
Condițiile 2 și 3 din propoziția de mai sus sunt echivalente cu condiția:
.
Exemple de subcorpuri
Fie un corp. Atunci este un subcorp al lui .
este un subcorp al lui .
Fie , înzestrat cu operațiile de adunare și înmulțire uzuale. Avem și .