Comitatul Yuma, Arizona

Pentru alte sensuri, vedeți Yuma (dezambiguizare).
Yuma County, Arizona
Comitat

Localizare în statul Arizona

Localizare în SUA a statului Arizona
ȚaraStatele Unite ale Americii Statele Unite ale Americii
Stat Arizona
ReședințăYuma
Fondat1864
Suprafață
 • Total14.288 km² (5.519 mi²)
 • Pământ14.275 km² (5.514 mi²)
 • Apă13 km² (5 mi²)
Populație
 • (2000)160.026, dar
190.557 (estimare 2007)
 • Densitate11 loc./km²
Site webwww.co.yuma.az.gov

Comitatul Yuma, conform originalului din engleză, Yuma County (cod FIPS, 04 - 027), este unul din cele 15 comitate ale statului american Arizona, fiind situat în partea central sudică a statului arizonian. Conform datelor statistice ale recensământului din anul 2000, furnizate de United States Census Bureau, populația sa totală era de 160.026 [1] de locuitori. Sediul comitatului este orașul omonim Yuma. GR6

Comitatul Yuma, care este unul din cele patru comitate originare ale Teritoriului Arizona, fiind fondat în 1864, este unul din comitatele din Uniune al cărui populație a crescut foarte mult procentual. O estimare a aceluiași Biroul de recensăminte al SUA pentru anul 2007 a indicat 190.557 de locuitori la sfârșitul anului 2007, o creștere de 30.531 de locuitori, ceea ce semnifică o creștere semnificativă de 19 % în șapte ani.

Istoric

Yuma County a fost unul din cele patru comitate originare ale Arizonei, create de Prima Adunare Legislativă a Teritoriului Arizona.

Geografie

Conform datelor statistice furnizate de United States Census Bureau, comitatul are o suprafață totală de 14.288 km2 (sau de 5.519 mile patrate), dintre care 14.275 km2 (sau 5.514 square miles) este uscat și doar 0.09 % (13 km2 sau 5 square miles) este apă.

Lanțuri montane

Drumuri importante

Comitate învecinate

Municipalități limitrofe din Mexic

Zone protejate național

Drumuri importante

Demografie


Date: Wikidata - grafică realizată de Wikipedia


Referințe

  1. ^ "[1]." United States Census Bureau. Retrieved on 5 aprilie 2008

Vezi și

Legături externe


Read other articles:

Achmad Kirang Informasi pribadiLahir(1941-11-08)8 November 1941 Mamuju, IndonesiaMeninggal31 Maret 1981(1981-03-31) (umur 31) Don Muang, ThailandKebangsaan IndonesiaAlma materAkademi MiliterPenghargaan sipil TNI - KPLB AnumertaKarier militerPihakIndonesiaDinas/cabang TNI Angkatan DaratMasa dinas—1981Pangkat Letnan SatuSatuanInfanteri (Kopassandha)Pangkat terakhirnya adalah Capa Inf., tetapi karena gugur dalam tugas, maka diberikan Kenaikan Pangkat Luar Biasa (KPLB) dinaikan pangka...

 

Untuk politikus, lihat Nathanael G. Pendleton. Nat PendletonCuplikan dari trailer untuk The Great Ziegfeld (1936)LahirNathaniel Greene Pendleton(1895-08-09)9 Agustus 1895Davenport, Iowa, Amerika SerikatMeninggal12 Oktober 1967(1967-10-12) (umur 72)San Diego, California, Amerika SerikatAlmamaterUniversitas Columbia (Sarjana)PekerjaanPemeran, pegulatTahun aktif1913–1956Suami/istriBarbara Evelyn (m.?-1967; kematiannya)Juanita Alfonzo (m.?-?) Rekam medali Gulat gaya bebas putra Me...

 

Artikel ini sebatang kara, artinya tidak ada artikel lain yang memiliki pranala balik ke halaman ini.Bantulah menambah pranala ke artikel ini dari artikel yang berhubungan atau coba peralatan pencari pranala.Tag ini diberikan pada Oktober 2022. Laku lajak, peran berlebihan, atau akting berlebihan (Inggris: overactingcode: en is deprecated ) mengacu kepada tingkah laku atau perbuatan yang berlebihan. Dalam seni peran, laku lajak berarti tindakan yang dilakukan oleh pemeran secara berlebihan da...

Pour les articles homonymes, voir Hong Kong (homonymie). Hong Kong Hong Kong Special Administrative Region of the People's Republic of China (en)中華人民共和國香港特別行政區 (zh) Emblème Drapeau Administration Pays République populaire de Chine Statut politique Région administrative spéciale Chef de l'exécutif John Lee Ka-chiu Président du Conseil législatif Andrew Leung (en) Juge en chef Andrew Cheung (en) Secrétaire en chef de l'administration Eric...

 

American soccer team Soccer clubBreakers FCFull nameBreakers FCNickname(s)BreakersFounded1992PresidentLepa Galeb-RoskoppCoachZoran DjurićMatthieu DelcroixMike RuneareSergi Tortell TuronDaniel OrtegaMark ChristiesLeagueMLS NextWebsiteClub website Home colors Away colors Breakers FC[1] is an American soccer club[2] based in Santa Cruz, California, United States founded in 1992. The club is a founding member of the Elite Youth Development Platform with partner Major League Socce...

 

For other uses, see Tualatin (disambiguation). Farming and suburban region southwest of Portland, Oregon Tualatin ValleyThe Tualatin Valley from Bald Peak State Scenic ViewpointThe Tualatin RiverFloor elevation180 ft (55 m)GeographyLocationWashington County & Clackamas County, OregonBorders on Northern Oregon Coast Range (West) Tualatin Mountains (North and East) Chehalem Mountains (South) Coordinates45°30′38″N 122°59′19″W / 45.51056°N 122.98861°W...

1985 film by Sydney Pollack For the migration of humans to other continents, see Recent African origin of modern humans. For the 1937 memoir by Danish author Karen Blixen, see Out of Africa. For other uses, see Out of Africa (disambiguation). Out of AfricaTheatrical release posterDirected bySydney PollackScreenplay byKurt LuedtkeBased onOut of Africaby Isak DinesenIsak Dinesen: The Life of a Story Tellerby Judith ThurmanSilence Will Speakby Errol TrzebinskiProduced bySydney PollackKim Jorgens...

 

本條目存在以下問題,請協助改善本條目或在討論頁針對議題發表看法。 此條目需要擴充。 (2013年1月1日)请協助改善这篇條目,更進一步的信息可能會在討論頁或扩充请求中找到。请在擴充條目後將此模板移除。 此條目需要补充更多来源。 (2013年1月1日)请协助補充多方面可靠来源以改善这篇条目,无法查证的内容可能會因為异议提出而被移除。致使用者:请搜索一下条目的...

 

2023 Antiguan general election ← 2018 18 January 2023 Next → All 17 seats in the House of Representatives9 seats needed for a majorityTurnout70.34 ( 6.17pp)   First party Second party Third party   Leader Gaston Browne Harold Lovell Trevor Walker Party ABLP UPP BPM Last election 59.24%, 15 seats 37.09%, 1 seat 1.43%, 1 seat Seats won 9 6 1 Seat change 6 5 Popular vote 20,052 19,267 624 Percentage 47.06% 45.22% 1.46% Swing 12.18pp 8.13pp 0.0...

Запрос «₶» перенаправляется сюда; о денежной единице см. Турский ливр. О других символах со сходным назначением см. Символ фунта (значения). Символ турского ливра ₶ Изображение ◄ ₲ ₳ ₴ ₵ ₶ ₷ ₸ ₹ ₺ ► Характеристики Название livre tournois sign Юникод U+20B6 HTML-код &#...

 

High Commissioner for Southern AfricaFlag of the High Commissioner for Southern Africa, 1907–1931Flag of the High Commissioner for Southern Africa, 1931–1968Formation27 January 1847First holderSir Henry PottingerFinal holderSir Hugh StephensonAbolished31 July 1964 The British office of high commissioner for Southern Africa was responsible for governing British possessions in Southern Africa, latterly the protectorates of Basutoland (now Lesotho), the Bechuanaland Protectorate (now Botswa...

 

  زاوزيرني (بالأوكرانية: Заозерне)‏(بالتتارية القرمية: Yalı Moynaq)‏    زاوزيرني (كريم) زاوزيرني (كريم) تقسيم إداري البلد أوكرانيا روسيا  [1] خصائص جغرافية إحداثيات 45°09′36″N 33°16′29″E / 45.16°N 33.274722222222°E / 45.16; 33.274722222222   المساحة 8.567776 كيلومتر مربع[2]  ...

Offenau Offenau dari barat daya Lambang kebesaranLetak Offenau di Heilbronn NegaraJermanNegara bagianBaden-WürttembergWilayahStuttgartKreisHeilbronnPemerintahan • MayorMichael FolkLuas • Total5,66 km2 (219 sq mi)Ketinggian148 m (486 ft)Populasi (2021-12-31)[1] • Total2.961 • Kepadatan5,2/km2 (14/sq mi)Zona waktuWET/WMPET (UTC+1/+2)Kode pos74254Kode area telepon07136Pelat kendaraanHNSitus webwww.offenau...

 

Museum Kardzhali Kardzhali atau Kurdzhali (Bulgaria: Кърджали) merupakan sebuah kota di Bulgaria. Kota ini letaknya di bagian selatan dan tepatnya di Provinsi Kardzhali. Pada tahun 2005, kota ini memiliki jumlah penduduk sebesar 63.164 jiwa. Kota ini terletak 260 km dari ibu kota Sofia. Kota kembar Gaziosmanpaşa, Istanbul, Turki Elkhart, Indiana, Amerika Serikat East Staffordshire, UK Vladikavkaz, Rusia. Vladimir, Rusia. Pranala luar Wikimedia Commons memiliki media mengenai Kar...

 

Personal computer series released in 1994 Not to be confused with the series of IBM Personal Computers released from 1981 to 1987. For a list of computers in that series, see List of IBM Personal Computer models. Personal Computer SeriesIBM PC 300PLAlso known asPC SeriesDeveloperIBMTypeDesktop PCRelease dateOct 1994 (Oct 1994)DiscontinuedOct 2000 (Oct 2000)CPUx86 or PowerPC (Power series)PredecessorIBM PS/2IBM PS/ValuePointSuccessorIBM NetVistaRelatedIBM Aptiva The Personal Computer...

Ver artigo principal: Cronologia da pandemia de COVID-19 Ver também: Pandemia de COVID-19 Esta é uma lista dinâmica e pode ser impossível torná-la completa de acordo com certos critérios. Você pode ajudar a Wikipédia expandindo-a com informações baseadas em fontes confiáveis. Parte de uma série sobre aPandemia de COVID-19Scientifically accurate atomic model of the external structure of SARS-CoV-2. Each ball is an atom. SARS-CoV-2 (vírus)COVID-19 (doença) Cronologia2019 Pré-...

 

2020 Ghanaian general election ← 2016 7 December 2020 2024 → Registered17,027,941 Presidential electionTurnout78.89%   Nominee Nana Akufo-Addo John Mahama Party NPP NDC Popular vote 6,730,587 6,213,182 Percentage 51.30% 47.36% President before election Nana Akufo-Addo NPP Elected President Nana Akufo-Addo NPP Parliamentary electionAll 275 seats in the Parliament of Ghana138 seats needed for a majority Party Leader % Seats +/– NPP Nana Akufo-Addo 50.42 137 �...

 

Jean-Pierre JabouilleJabouille pada 2012Lahir(1942-10-01)1 Oktober 1942Paris, Pendudukan Jerman di PrancisMeninggal2 Februari 2023(2023-02-02) (umur 80)Karier Kejuaraan Dunia Formula SatuKebangsaanPrancisTahun aktif1974–1975, 1977–1981TimFrank Williams Racing Cars, Surtees, Tyrrell, Renault, LigierJumlah lomba55 (49 start)Juara Dunia0Menang2Podium2Total poin21Posisi pole6Lap tercepat0Lomba pertamaGrand Prix Prancis 1974Menang pertamaGrand Prix Prancis 1979Menang terakhirGrand Prix Au...

Oxford awards for Greek or Latin This article needs additional citations for verification. Please help improve this article by adding citations to reliable sources. Unsourced material may be challenged and removed.Find sources: Gaisford Prize – news · newspapers · books · scholar · JSTOR (April 2013) (Learn how and when to remove this message) Thomas Gaisford The Gaisford Prize is a prize awarded by the Faculty of Classics, University of Oxford for a c...

 

Polynomials used for interpolation Not to be confused with Legendre polynomials (the orthogonal basis of function space). This image shows, for four points ((−9, 5), (−4, 2), (−1, −2), (7, 9)), the (cubic) interpolation polynomial L(x) (dashed, black), which is the sum of the scaled basis polynomials y0ℓ0(x), y1ℓ1(x), y2ℓ2(x) and y3ℓ3(x). The interpolation polynomial passes through all four control points, and each scaled basis polynomial pa...