Em mecânica estatística, a estatística de Maxwell–Boltzmann descreve a distribuição estatística de partículas materiais em vários estados de energia em equilíbrio térmico, quando a temperatura é alta o suficiente e a densidade é baixa suficiente para tornar os efeitos quânticos negligenciáveis. A estatística Maxwell–Boltzmann é consequentemente aplicável a quase qualquer fenômeno terrestre para os quais a temperatura está acima de poucas dezenas de kelvins.[1][2]
O número esperado de partículas com energia para a estatística de Maxwell–Boltzmann é onde:
A distribuição de Maxwell-Boltzmann tem sido aplicada especialmente à teoria cinética dos gases, e outros sistemas físicos, além de em econofísica para predizer a distribuição da renda. Na realidade a distribuição de Maxwell-Boltzmann é aplicável a qualquer sistema formado por N "partículas" ou "indivíduos" que interacambiam estacionariamente entre si uma certa magnitude e cada um deles têm uma quantidade da magnitude e ao longo do tempo ocorre que .
Assumindo que o valor mínimo de é bastante pequeno, se pode verificar que a condição na qual a distribuição de Maxwell-Boltzmann é válida é quando se cumpre que:
↑Carter, Ashley H., "Classical and Statistical Thermodynamics", Prentice-Hall, Inc., 2001, New Jersey. ISBN 0-13-779208-5 (em inglês)
↑Selva, Rodolfo N. (abril de 1997), «Capítulo IV» La Llave Ediciones S.R.L., Dispositivos Electrónicos, 1ra edición, páginas 84 a 99. ISBN 950-795-009-5