Em Física o efeito Scharnhorst consiste na variação da velocidade da luz quando esta é submetida a espaços confinados. Este efeito se encontra relacionado ao famoso efeito Casimir.
Fundamentos Teóricos
O que se denomina espaço vazio ou vácuo, na visão da Física Moderna, especialmente da teoria quântica de campos, está longe de corresponder à noção filosófica do nada.
O que se prevê, contrariamente ao senso comum e à física tradicional até o século XIX, é que existe um mínimo de energia, usualmente indetectável, mesmo no espaço vazio. Essa noção tem seu início com o próprio desenvolvimento da teoria quântica, no trabalho de Planck sobre as características da radiação do corpo negro. Quando ele desenvolveu a noção de energia quantizada, atribuindo valores discretos à grandeza energia, a energia do ponto zero está presente como o nível de energia mais baixo do sistema. De fato, a pesquisa ulterior de Heisenberg, através do seu famoso princípio da incerteza, preve um mínimo de energia pelo fato mesmo de que a medida da energia não pode ser efetivada a menos de uma precisão da ordem de constante de Planck h.
De foram independente e paralela, o desenvolvimento da teoria da relatividade começou a provar a tangibilidade do espaço, sendo que este deixou de ser um conceito abstrato, passando a ser considerado como um aspecto de um ente misto, o espaço-tempo. Na relatividade geral, o espaço-tempo adquiriu um status ainda mais destacado, passando a ser considerado recurvado pela presença da matéria e da energia.
Bem mais recentemente, com o desenvolvimento da teoria quântica dos campos, essa idéia é levada ainda mais longe: o espaço vazio passou a ser considerado como um campo fundamental, de onde as partículas surgem como excitações deste.
Neste arcabouço teórico da teoria dos campos, surge a explicação do efeito Casimir. Em 1948 o físico holandês Hendrik Brugt Gerhard Casimir estudava, junto com seu colega D. Polder, as interações entre as partículas coloidais de quartzo nos laboratórios de pesquisa da Philips. O resultados experimentais sugeriam que as forças de Van der Waals não explicavam corretamente a atração entre as ditas partículas. Por sugestão de Niels Bohr, Casimir considerou que a finitude da velocidade da luz e a existência da energia do ponto zero explicavam o fenômeno.
Em 22 de fevereiro de 1990, Klaus Scharnhorst da Universidade de Humboldt em Berlin, na então Alemanha Oriental usou a teoria da eletrodinâmica quântica (QED, uma teoria quântica de campo) para calcular o que aconteceria entre duas placas paralelas e condutoras. Ele previu então que a luz propagando-se perpendicularmente às placas sofreria uma debilíssima aceleração de uma parte em 10^36, ao passo que a luz se propagando paralelamente não sofreria alterações em sua velocidade. À mesma conclusão chegou Gabriel Barton, da Universidade de Sussex, em Brighton, Inglaterra, por uma abordagem levemente diferente. Isso se deve ao fato de a luz interagir com os pares de partículas surgidas no vácuo, em decorrência da energia do ponto zero, prevista pelo princípio da incerteza e legitimada pela QED
Em frequências muito menores que aquelas correspondentes à massa do elétron, a bem estabelecida interação de Euler-Heinsenberg
prevê para o vácuo um índice de refração proporcional à intensidade e não dispersivo. Mas, como se sabe das considerações teóricas que explicam o efeito Casimir, a intensidade do campo do ponto-zero entre espelhos paralelos é menor que o do espaço não limitado, para o qual a luz perpendicular aos espelhos impõe um índice de refração n < 1 e uma velocidade c/n > c, como Scharnhorst descobriu. Diversamente, a radiação ordinária do corpo negro apresenta n > 1. O efeito previsto é muitíssimo débil, embora as implicações teóricas sejam interessantes em si mesmas.
Bibliografia
G. Barton: Faster-than-c light between parallel mirrors. The Scharnhorst effect rederived; Physics Letters B 237(1990)559-562.
S.M. Barnett: Quantum electrodynamics - Photons faster than light?; Nature 344, No. 6264 (1990)289
P.W. Milonni, K. Svozil: Impossibility of measuring faster-than-c signaling by the Scharnhorst effect; Physics Letters B 248(1990)437-438.
A. Gould: Is faster-than-c light possible?; Institute for Advanced Study Princeton Preprint IASSNS-AST-90-25, 3pp..
S. Ben-Menahem: Causality between conducting plates; Physics Letters B 250(1990)133-138.
G. Barton: How close to ideal is the photon gas? Corrections to Planck's laws at kT < < me; Annals of Physics (New York) 205(1991)49-69.
E.A. Hinds, V. Sandoghdar: Cavity QED level shifts of simple atoms; Physical Review A 43(1991)398-403.
B.W. Petley: The fundamental constants of physics and spectroscopy; Proceedings of the 23. EGAS Conference of the European Group for Atomic Spectroscopy, Torun, Poland, July 9-12, 1991, Editor S. Legowski; Physica Scripta T40(1992)5-14.
B.W. Petley: The role of the fundamental constants of physics in metrology; Metrologia 29(1992)95-112.
P.W. Milonni, M.L. Shih: Casimir forces; Contemporary Physics 33(1992)313-322.
G. Barton, K. Scharnhorst: QED between parallel mirrors: Light signals faster than c, or amplified by the vacuum; Journal of Physics A: Mathematical and General 26(1993)2037-2046.
F. Lobo-Fernández: Causality in QED with boundaries; Physics Letters B 305(1993)173-176.
R.D. Daniels, G.M. Shore: `Faster than light' photons and charged black holes; Nuclear Physics B 425(1994)634-650 [hep-th/9310114].
K. Scharnhorst: A functional integral equation for the complete effective action in quantum field theory; University of Leipzig Preprint NTZ 16/1993, hep-th/9312137, 88 pp.. International Journal of Theoretical Physics 36(1997)281-343, abbreviated version.
J.I. Latorre, P. Pascual, R. Tarrach: Speed of light in non-trivial vacua; Nuclear Physics B 437(1995)60-82 [hep-th/9408016].
G.L. Bennett, R.L. Forward, R.H. Frisbee: Report on the NASA/JPL workshop on advanced quantum/relativity theory propulsion; 31st AIAA/ASME/SAE/ASEE Joint Propulsion Conference and Exhibit, San Diego, CA, July 10-12, 1995; American Institute of Aeronautics and Astronautics Report AIAA 95-2599, 20 pp.
T. Emig: Deutung der Tunnelzeiten bei evaneszenten elektromagnetischen Moden im Rahmen der klassischen Elektrodynamik [Interpretation of tunneling times for evanescent electromagnetic modes within the framework of classical electrodynamics]; Diploma Thesis, University of Cologne 1995, 101 pp. [in German].
G.M. Shore: `Faster than light' photons in gravitational fields - Causality, anomalies and horizons; Nuclear Physics B 460(1996)379-394 [gr-qc/9504041].
R.Y. Chiao: Population inversion and superluminality; Amazing Light - A Volume Dedicated to Charles Hard Townes on His 80th Birthday, Editor R.Y. Chiao; Springer-Verlag, New York 1996, pp. 191-210.
R.L. Forward: Mass modification experiment study (an Air Force report); Journal of Scientific Exploration 10(1996)325-354.
R.D. Daniels, G.M. Shore: `Faster than light' photons and rotating black holes; Physics Letters B 367(1996)75-83 [gr-qc/9508048].
L. Spruch: Long-range (Casimir) interactions; Science 272, No. 5267(1996)1452-1455.
H.E. Puthoff: SETI, the velocity-of-light limitation, and the Alcubierre warp drive - An integrating overview; Physics Essays 9(1996)156-158.
G. Diener: Superluminal group velocities and information transfer; Physics Letters A 223(1996)327-331.
X.W. Kong, F. Ravndal: What is the regularized Casimir energy density?; quant-ph/9701022, 6 pp..
X.W. Kong, F. Ravndal: Radiative corrections to the Casimir energy; Physical Review Letters 79(1997)545-548 [quant-ph/9703019].
B. Haisch, A. Rueda, H.E. Puthoff: Physics of the zero-point field: Implications for inertia, gravitation and mass; Speculations in Science and Technology 20(1997)99-114.
H.D. Froning, Jr., R.L. Roach: Inertia reduction - and possibly impulsion - by conditioning electromagnetic fields; Paper presented at the 33rd AIAA/ASME/SAE/ASEE Joint Propulsion Conference and Exhibit, July 6-9, 1997, Seattle, WA, USA. American Institute of Aeronautics and Astronautics Report AIAA 97-3170, 11 pp..
I. Brevik, V.V. Nesterenko, I.G. Prirozhenko: Direct mode summation for the Casimir energy of a solid ball; Journal of Physics A: Mathematical and General 31(1998)8661-8668 [hep-th/9710101].
M.V. Cougo-Pinto, C. Farina, A. Tort, J. Rafelski: Magnetic permeability in constrained fermionic vacuum; Physics Letters B 434(1998)388-395 [hep-th/9711190].
R.G. Cai: Propagation of vacuum polarized photons in topological black hole spacetimes; Nuclear Physics B 524(1998)639-657 [gr-qc/9801098].
C. Lämmerzahl: Quantum tests of space-time structures; Spin in Gravity - Is it Possible to Give an Experimental Basis to to Torsion? International School of Cosmology and Gravitation, XV. Course, 13-20 May, 1997, Erice, Italy, Editors P. G. Bergmann, V. de Sabbata, G. T. Gillies, P. I. Pronin, A. Zichichi. World Scientific Press, Singapore, 1998, pp. 91-117.
H.D. Froning, Jr., T.W. Barrett: Space coupling by specially conditioned electromagnetic fields; Space Technology and Applications Forum - 1998. 1st Conference on Global Virtual Presence, 1st Conference on Orbital Transfer Vehicles, 2nd Conference on Applications of Thermophysics in Microgravity, 3rd Conference on Commercial Development of Space, 3rd Conference on Next Generation Launch Systems, 15th Symposium on Space Nuclear Power and Propulsion, Albuquerque, NM January 1998, Editor Mohamed S. El-Genk. AIP Conference Proceedings, Vol. 420. American Institute of Physics, Woodbury, NY, 1998, pp. 1449-1454.
X.W. Kong, F. Ravndal: Quantum corrections to the QED vacuum energy; Nuclear Physics B 526(1998)627-656 [hep-ph/9803216].
H. Gies, W. Dittrich: Light propagation in non-trivial QED vacua; Physics Letters B 431(1998)420-429 [hep-ph/9804303].
W. Dittrich, H. Gies: Light propagation in nontrivial QED vacua; Physical Review D 58(1998)025004, 13 pp. [hep-ph/9804375].
A.D. Dolgov, I.D. Novikov: Superluminal propagation of light in gravitational field and non-causal signals; Physics Letters B 442(1998)82-89 [gr-qc/9807067].
M.V. Cougo-Pinto, C. Farina, A. Tort: Fermionic Casimir effect in an external magnetic field; University of Rio de Janeiro Preprint IF-UFRJ-98-67, hep-th/9809215, 7 pp..
K. Scharnhorst: The velocities of light in modified QED vacua; Proceedings of the Workshop Superluminal(?) Velocities: Tunneling Time, Barrier Penetration, Non-Trivial Vacua, Philosophy of Physics, June 1998, Cologne, Guest Editors P. Mittelstaedt, G. Nimtz; Annalen der Physik (Leipzig), 8. Series, 7(1998)700-709 [hep-th/9810221]. = paper [26]
H.D. Froning, Jr.: Experiments to explore space coupling by specially conditioned electromagnetic fields; NASA Breakthrough Propulsion Physics Workshop Proceedings, Proceedings of a Conference Held and Sponsored by NASA Lewis Research Center, Cleveland, OH, August 12-14, 1997; NASA, Lewis Research Center, NASA Technical Report NASA/CP-1999-208694, pp. 207-215.
M.V. Cougo-Pinto, C. Farina, F.C. Santos, A. Tort: The speed of light in confined QED vacuum: Faster or slower than c?; Physics Letters B 446(1999)170-174.
M.V. Cougo-Pinto, C. Farina, M.R. Negrão, A. Tort: Bosonic Casimir effect in external magnetic field; Journal of Physics A: Mathematical and General 32(1999)4457-4462.
M.V. Cougo-Pinto, C. Farina, F.C. Santos, A. Tort: QED vacuum between a conducting and a permeable plate; Journal of Physics A: Mathematical and General 32(1999)4463-4474 [ hep-th/9811062].
K.A. Milton: Julian Schwinger and the Casimir effect - The reality of zero-point energy; The Casimir Effect 50 Years Later, Proceedings of the Fourth Workshop on Quantum Field Theory under the Influence of External Conditions, Leipzig, Germany, September 14-18, 1998, Editor M. Bordag; World Scientific, Singapore 1999, pp. 20-36 [hep-th/9811054].
W. Dittrich, H. Gies: Applications of the light cone condition for various perturbed vacua; The Casimir Effect 50 Years Later, Proceedings of the Fourth Workshop on Quantum Field Theory under the Influence of External Conditions, Leipzig, Germany, September 14-18, 1998, Editor M. Bordag; World Scientific, Singapore 1999, pp. 247-259 [hep-ph/9903469].
M.V. Cougo-Pinto, C. Farina, F.C. Santos, A. Tort: The speed of light between an unusual pair of plates; The Casimir Effect 50 Years Later, Proceedings of the Fourth Workshop on Quantum Field Theory under the Influence of External Conditions, Leipzig, Germany, September 14-18, 1998, Editor M. Bordag; World Scientific, Singapore 1999, pp. 260-264.
F.C. Santos, A. Tenório, A.C. Tort: Zeta function method and repulsive Casimir forces for an unusual pair of plates at finite temperature; Physical Review D 60(1999)105022, 9 pp. [quant-ph/9903064].
H. Gies: Light cone condition for a thermalized QED vacuum; Physical Review D 60(1999)105033, 9 pp. [hep-ph/9906303].
H. Gies: Probing the quantum vacuum - Perturbative effective action approach in QED and QCD and its applications; Doctoral Thesis, Eberhard Karls University Tübingen 1999, 264 pp..
C.D. Fosco, N.F. Svaiter: Finite size effects in the anisotropic lambda (phi14 + phi24)d /4! model; CBPF Rio de Janeiro Preprint CBPF-NF-052-99, hep-th/9910068, 33 pp..
S.K. Lamoreaux: Resource letter CF-1: Casimir force; American Journal of Physics 67(1999)850-861.
H.D. Froning, Jr.: Fast space travel by vacuum zero-point field perturbations; Space Technology and Applications Forum - 1999. Conference on International Space Station Utilization, Conference on Global Virtual Presence, Conference on Applications of Thermophysics in Microgravity and Breakthrough Propulsion Physics, Conference on Next Generation Launch Systems, 16th Symposium on Space Nuclear Power and Propulsion, Albuquerque, NM, February 1999, Editor Mohamed S. El-Genk. AIP Conference Proceedings, Vol. 458. American Institute of Physics, Woodbury, NY, 1999, pp. 920-925.
M. Novello, V.A. De Lorenci, J.M. Salim, R. Klippert: Geometrical aspects of light propagation in nonlinear electrodynamics; Physical Review D 61(2000)045001, 10 pp. [gr-qc/9911085].
H. Gies: QED effective action at finite temperature: Two-loop dominance; Physical Review D 61(2000)085021, 18 pp. [hep-ph/9909500].
D T. Alves, C. Farina, A.C. Tort: Spontaneous emission between two parallel plates, one or both infinitely permeable; Physical Review A 61(2000)034102, 4 pp.
B.A. Bassett, S. Liberati, C. Molina-París, M. Visser: Geometrodynamics of variable-speed-of-light cosmologies; Physical Review D 62(2000)103518, 18 pp. [astro-ph/0001441].
S. Liberati, B.A. Bassett, C. Molina-París, M. Visser: Chi-variable-speed-of-light cosmologies; Constrained Dynamics and Quantum Gravity 1999, Proceedings of the Third Meeting on Constrained Dynamics and Quantum Gravity, QG99, Villasimius, Sardinia, Italy, 13-17 September 1999, Editors V. de Alfaro, J.E. Nelson, M. Cadoni, M. Cavaglià, A. Filippov; Nuclear Physics B - Proceedings Supplements, 88(2000)259-262 [astro-ph/0001481].
F.M. Winterberg: The Planck Aether Hypothesis: an Attempt for a Finitistic Theory of Elementary Particles; Verlag relativistischer Interpretationen - VRI, Karlsbad 2000.
V.A. De Lorenci, R. Klippert, M. Novello, J.M. Salim: Light propagation in non-linear electrodynamics; Physics Letters B 482(2000)134-140 [gr-qc/0005049].
M.V. Cougo-Pinto, C. Farina, A. Tort: O efeito Casimir [The Casimir effect]; Revista Brasileira de Ensino de Física 22(2000)122-132 [in Portuguese].
M.V. Cougo-Pinto, C. Farina, M.S. Ribeiro, A.C. Tort: Permissidade elétrica do vácuo da EDQ escalar sob condições de contorno [Electric permittivity of the vacuum in scalar quantum electrodynamics with boundary conditions]; XXI Encontro Nacional de Física de Partículas e Campos [Proceedings of 21th Brazilian National Meeting on Particles and Fields], São Lourenço, Minas Gerais, Brazil, 23 - 27 Oct 2000 [in Portuguese].
M.V. Cougo-Pinto, C. Farina, M.R. Negrão, A. Tort: Magnetic permeability of constrained scalar QED vacuum; Physics Letters B 483(2000)144-150.
A. Hansson: Virtual space tourism; Architectural Design 70:2(= Profile 144: Space Architecture, Guest Editor R. Armstrong) (2000)26-29.
W. Dittrich, H. Gies: Probing the quantum vacuum. Perturbative effective action approach in quantum electrodynamics and its application. Springer Tracts in Modern Physics, Vol. 166. Springer, Berlin, 2000.
S. Liberati: Vacuum effects in gravitational fields: Theory and detectability; Ph.D. Thesis, International School for Advanced Studies (SISSA), Trieste 2000, gr-qc/0009050, 237 pp..
J. Mehra, K.A. Milton: Climbing the Mountain - The Scientific Biography of Julian Schwinger. Oxford University Press, Oxford 2000.
H.D. Froning, Jr., R.L. Roach: Preliminary simulations of vehicle interactions with the zero-point vacuum by fluid-dynamic approximations. Paper presented at the 36th AIAA/ASME/SAE/ASEE Joint Propulsion Conference and Exhibit, July 17-19, 2000, Huntsville, AL, USA. American Institute of Aeronautics and Astronautics Report AIAA 2000-3478, 10 pp..
S. Liberati, S. Sonego, M. Visser: Scharnhorst effect at oblique incidence; Physical Review D 63(2001)085003, 10 pp. [quant-ph/0010055].
D.A.R. Dalvit, F.D. Mazzitelli, C. Molina-París: One-loop graviton corrections to Maxwell's equations; Physical Review D 63(2001)084023, 12 pp. [hep-th/0010229].
M.D. Roberts: Vacuum energy; Poster contribution to the Conference on Fundamental and Applied Aspects of Modern Physics (Lüderitz 2000), Lüderitz, Namibia, South Africa, 13-17 Nov 2000, hep-th/0012062, 153 pp..
C. Barceló, S. Liberati, M. Visser: Analogue gravity from field theory normal modes?; Classical and Quantum Gravity 18(2001)3595-3610 [gr-qc/0104001].
M.V. Cougo-Pinto, C. Farina, A. Tort: The influence of an external magnetic field on the fermionic Casimir effect; Brazilian Journal of Physics 31(2001)84-88.
G.J. Maclay, H. Fearn, P.W. Milonni: Of some theoretical significance: Implications of Casimir effects; European Journal of Physics 22(2001)463-469 [quant-ph/0105002].
R.W. Ziolkowski: Superluminal transmission of information through an electromagnetic metamaterial; Physical Review E 63(2001)046606, 13 pp..
R.G. Cai: Superluminal noncommutative photons; Physics Letters B 517(2001)457-461 [hep-th/0106047].
E.J. Ferrer, V. de la Incera, A. Romeo: Photon propagation in space-time with a compactified spatial dimension; Physics Letters B 515(2001)341-341 [hep-ph/0107229].
S. Liberati, S. Sonego, M. Visser: Faster-than-c signals, special relativity, and causality; Annals of Physics (New York) 298(2002)167-185 [gr-qc/0107091].
E.J. Ferrer, V. de la Incera, A. Romeo: Spontaneous CPT violation in confined QED; Theoretical High Energy Physics - MRST 2001, a Tribute to Roger Migneron, London, Ontario, Canada, 15-18 May 2001; Editors V. Elias, D.G.C. McKeon, V.A. Miranski. AIP Conference Proceedings Vol. 601. American Institute of Physics, Melville, NY, 2001, pp. 235-241.
K.A. Milton: The Casimir Effect - Physical Manifestations of Zero-Point Energy. World Scientific, New Jersey, 2001.
B.E. Sernelius: Surface Modes in Physics; Wiley-VCH, Berlin 2001.
G.M. Shore: Faster than light photons in gravitational fields II - dispersion and vacuum polarisation; Nuclear Physics B 633(2002)271-294 [gr-qc/0203034].
M. Visser, C. Barceló, S. Liberati: Bi-refringence versus bi-metricity; gr-qc/0204017, 10 pp..
C. Fonseca-Barbatti, M. Novello, J.M. Salim, R.C. Arcuri: Creation of a wormhole due to nonlinear electrodynamics; Modern Physics Letters A 17(2002)1305-1314.
Yu.N. Obukhov, G.F. Rubilar: Fresnel analysis of wave propagation in nonlinear electrodynamics; Physical Review D 66(2002)024042, 11 pp. [gr-qc/0204028 ].
M.I. Caicedo, N.F. Svaiter: Effective Lagrangians for scalar fields and finite size effects in field theory; Journal of Mathematical Physics 45(2004)179-196 [hep-th/0207202].
K. Svozil: On the possibility of supercavitation in the quantum ether; physics/0210091, 4 pp..
J. Kåhre: The Mathematical Theory of Information. The Kluwer International Series in Engineering and Computer Science, Vol. 684. Kluwer Academic Publishers, Boston, Dordrecht, London, 2002.
H.D. Froning, Jr., R.L. Roach: Preliminary simulations of vehicle interactions with the quantum vacuum by fluid-dynamic approximations. Paper presented at the 38th AIAA/ASME/SAE/ASEE Joint Propulsion Conference and Exhibit, July 7-10, 2002, Indianapolis, IN, USA. American Institute of Aeronautics and Astronautics Report AIAA 2002-3925, 11 pp..
M. Visser: Coda; Artificial Black Holes, Editors M. Novello, M. Visser, G. Volovik; World Scientific, Singapore 2002, pp. 365-382.
N. Bilić, H. Nikolić: Superluminal pions in a hadronic fluid; Physical Review D 68(2003)085008, 7 pp. [hep-ph/0301275].
G.M. Shore: Causality and superluminal light; University of Wales Swansea Preprint SWAT/03-372, gr-qc/0302116, 22 pp..
G.M. Shore: Quantum gravitational optics; Contemporary Physics 44(2003)503-521 [gr-qc/0304049].
J. Magueijo: New varying speed of light theories; Reports on Progress in Physics 66(2003)2025-2068 [astro-ph/0305457].
I.M. Khalatnikov: Open static Chaplygin universe; Physics Letters B 563(2003)123-131.
R.W. Ziolkowski, C.-Y. Ying: Existence and design of trans-vacuum-speed metamaterials; Physical Review E 68(2003)026612, 18 pp..
H. Fearn, R.H. Gibb: Dispersion relations and relativistic causality; quant-ph/0310059, 13 pp..
H. Nikolić: Causal paradoxes: a conflict between relativity and the arrow of time; gr-qc/0403121, 6 pp..
D. Arteaga, R. Parentani, E. Verdaguer: Gravity-mediated modifications of the dispersion relation in nontrivial backgrounds; Proceedings of the Peyresq Physics 8 Meeting, The Early Universe - Confronting Theory with Observations, Peyresq, France, 12-27 Jun 2003, Guest Editors E. Gunzig, V. Mukhanov, E. Verdaguer. International Journal of Theoretical Physics 43(2004)731-747.
E. Elizalde, E.J. Ferrer, V. de la Incera: Neutrino propagation in a strongly magnetized medium; Physical Review E 70(2004)043012, 19 pp. [hep-ph/0404234 ].
H. Nikolić: Relativistic quantum mechanics and the Bohmian interpretation; Foundations of Physics Letters 18(2005)549-561 [quant-ph/0406173].
E.J. Ferrer, V. de la Incera: Photons and fermions in spacetime with a compactified spatial dimension; Вестник Томского Государственного Педагогического Университета [Vestnik Tomskogo Gosudarstvennogo Pedagogicheskogo Universiteta] (2004) выпуск [issue] 7(44), 88-94 [hep-ph/0408229].
C. Farina, F.A. Barone: Scharnhorst effect for a general two-parameter lagrangian density; Physical Review D 71(2005)067701, 4 pp. [hep-th/0410140].
R.B.. Rodrigues, N.F. Svaiter: The physical measurable vacuum energy density in rectangular geometries and the Scharnhorst effect; Physica A 342(2004)529-550.
E.W. Davis: Teleportation physics study; US Air Force Research Laboratory Special Report AFRL-PR-ED-TR-2003-0034. US Air Force Research Laboratory, Edwards Air Force Base, 2004, 75 pp..
H. Nikolić: Superluminal pions in the linear sigma model; Particle Physics and the Universe, Proceedings of the 9th Adriatic Meeting, Sept. 2003, Dubrovnik, Editors J. Trampetić, J. Wess. Springer Proceedings in Physics, Vol. 98. Springer, Berlin, 2005, pp. 169-172.
C. Eberlein, D. Robaschik: Quantum electrodynamics near a dielectric half-space; Physical Review D 73(2006)025009, 16 pp. [quant-ph/0507113 ].
G. Russo: Conditions for the generation of causal paradoxes from superluminal signals; Electronic Journal of Theoretical Physics 2:8(2005)36-42.
M. Marklund, P.K. Shukla: Nonlinear collective effects in photon-photon and photon-plasma interactions; hep-ph/0602123, 47 pp..