Condado da Flandres



Graafschap Vlaanderen
Condado da Flandres

866 – 1795
Flag Brasão
Bandeira Brasão
Localização de Condado da Flandres
Localização de Condado da Flandres
Condado de Flanders, 1350, em relação aos Países Baixos e do Sacro Império Romano-Germânico. O condado foi localizado na fronteira entre a França e o Sacro Império Romano o Mar do Norte.
Continente Europa
Capital Bruges e depois Gante
Língua oficial picarda flamengo e Francês antigo francês
Religião católica
Governo Condado
Período histórico Idades Média e Moderna
 • 866 Condado de Flandes, vassalo do Reino de Francia
 • 1302 Independência del Reino de Francia
 • 1384 União com o Ducado de Borgonha
 • 1512 É integrado aos Países Baixos Espanhóis
 • 1549 Dezessete Províncias
 • 1713 Passa a ser possessão austríaca
 • 1795 Dissolução

O Condado da Flandres foi um Estado europeu independente desde o século IX com enorme importância política em particular no século XIV.[1][2] Ao longo da sua história, o Condado da Flandres expandiu os seus domínios para Hainaut, Namur, Béthune, Nevers, Auxerre e Rethel, incluindo também os Ducados de Brabante e Limburgo, através de alianças matrimoniais com as herdeiras destas terras. Ironicamente, o Condado seria anexado pelo Ducado da Borgonha, em 1405, pelo mesmo motivo.

Flandres era uma grande região comercial e importante centro de manufaturas têxteis, sendo, por isso, motivo de disputa pelos reis da França e Inglaterra durante a Guerra dos Cem Anos.

Castelo dos Condes da Flandres (Gravensteen) em Gante

Ver também

Referências

  1. Rogers, Clifford J. (2010). The Oxford Encyclopedia of Medieval Warfare and Military Technology (em inglês). Oxford: Oxford University Press. p. 105 
  2. Cortés, Carlos E. (2013). Multicultural America: A Multimedia Encyclopedia (em inglês). Thousand Oaks: SAGE Publications. p. 884 
Ícone de esboço Este artigo sobre História da Bélgica é um esboço. Você pode ajudar a Wikipédia expandindo-o.

Read other articles:

Ini adalah nama Tionghoa; marganya adalah Wu. Chien-Shiung WuChien-Shiung Wu pada 1958 di Columbia UniversityLahir(1912-05-31)31 Mei 1912Liuhe, Taicang, Jiangsu, Republik TiongkokMeninggal16 Februari 1997(1997-02-16) (umur 84)New York City, Amerika SerikatKebangsaanAmerika SerikatAlmamaterNational Central University University of California, BerkeleySuami/istriLuke Chia-Liu Yuan ​(m. 1942)​AnakVincent Yuan (袁緯承)Penghargaan Comstock Prize in Physics (196...

 

River in California, United States Bear RiverArroyo de los Osos[1]Bear River in the Sierra foothillsMap of the Bear River watershedLocationCountryUnited StatesStateCaliforniaPhysical characteristicsSource  • locationSierra Nevada • coordinates39°18′29″N 120°39′23″W / 39.30806°N 120.65639°W / 39.30806; -120.65639[1] • elevation4,800 ft (1,500 m)[2] MouthFeather River...

 

Anderson CooperCooper pada tahun 2010LahirAnderson Hays Cooper3 Juni 1967 (umur 56)Kota New York, New York, A.S.PendidikanYale University (BA)PekerjaanJurnalis siaranPenulisPembawa acaraTahun aktif1990–sekarangKarya terkenalWorld News Now (1999–2000)American Morning (2002)Anderson Cooper 360° (2003–sekarang)Anderson Live (2011–2013) Anderson Hays Cooper (lahir 3 Juni 1967) adalah jurnalis, penulis, dan tokoh televisi Amerika Serikat. Ia adalah pembawa berita Anderson Coope...

 Треугольник смерти  ВСЮР  Советская Россия  Польша  РПАУ (махновцы) Польско-украинская война Перемышль Львов (1) Львовский погром Зимнее наступление Хыров Жолква Ковель Владимир-Волынский Закарпатье Львов (2) Майское наступление Тарнополь (1) Буковина Покуть�...

 

JDS Yuugiri (DD-153) adalah sebuah kapal perusak kelas Asagiri milik Angkatan Laut Bela Diri Jepang. Ia mulai dibangun pada tahun 1984 dan mulai bertugas pada tahun 1989. Yuugiri berbobot 3.500 ton (standar) dengan panjang 137 meter dan lebar 14,6 meter. Kapal ini memiliki kecepatan maksimal 30 knot dengan dilengkapi berbagai persenjataan, sensor, serta membawa satu helikopter Seahawk. Yuugiri memiliki rudal anti kapal Harpoon dan rudal permukaan ke udara Sea Sparrow. Pranala luar Wikimedia ...

 

Ski jumping tournament held in Norway For the current tournament, see Raw Air 2023. Raw AirGenreski jumpingski flyingLocation(s) Oslo (5 rounds) Lillehammer (3 rounds) Trondheim (3 rounds) Vikersund (5 rounds)Inaugurated10 March 2017 (Men)9 March 2019 (Women)FounderArne ÅbråtenOrganised byInternational Ski Federation Raw Air is a series of ski jumping competitions in ski jumping and ski flying in venues across Norway, taking place starting from the 2016–17 season. Founded by Arne Åbråte...

ياقوت الحموي معلومات شخصية الميلاد سنة 1178   القسطنطينية  الوفاة 20 أغسطس 1229 (50–51 سنة)  حلب  مكان الدفن مقبرة الخيزران  الحياة العملية تعلم لدى ابن يعيش النحوي،  وأبو البقاء العكبري  المهنة مستكشف،  وجغرافي،  وكاتب،  ومؤرخ  اللغات العربية  مجا...

 

Untuk kegunaan lain, lihat Shadia (disambiguasi). ShadiaFoto pada sekitar tahun 1955–1958Nama asalشاديةLahirFatma Ahmad Kamal Shaker فاطمة أحمد كمال شاكر(1931-02-08)8 Februari 1931Kairo, MesirMeninggal28 November 2017(2017-11-28) (umur 86)Kairo, MesirKebangsaanMesirPekerjaanPemeranpenyanyiTahun aktif1947–1984Suami/istriEmad Hamdy (1953–1956)Aziz Fathi (1958–1958)Salah Zulfikar (1964–1970) Fatma Ahmed Kamal Shaker (Arab: فاطمة أحمد كما...

 

American explorer, scientist, philanthropist John Innes KaneBorn(1850-07-29)July 29, 1850DiedFebruary 1, 1913(1913-02-01) (aged 62)Manhattan, New York, U.S.Resting placeGreen-Wood CemeterySpouse Annie Cottenet Schermerhorn ​ ​(m. 1878)​RelativesWoodbury Kane (brother)S. Nicholson Kane (brother)Sybil Kent Kane (sister)DeLancey Astor Kane (brother) John Innes Kane (July 29, 1850 – February 1, 1913)[1] was an American explorer, scientist and phil...

French footballer (1884–1921) Louis Mesnier Louis Mesnier circa 1900Personal informationFull name Louis MesnierDate of birth 1 January 1884Date of death 10 October 1921(1921-10-10) (aged 37)Position(s) WingerSenior career*Years Team Apps (Gls) CA Paris – (–) FC Paris – (–)International career1904–1913 France 14 (6) *Club domestic league appearances and goals Louis Mesnier (15 December 1884 – 10 October 1921) was a French international footballer.[1] He is primar...

 

Title in the peerage of Ireland Earldom of MexboroughArms of Savile: Argent, on a bend sable three owls guardant close of the field; Crest: An owl guardant close argent; Supporters: On either side a lion proper collared and chained orCreation date11 February 1766Created byKing George IIIPeeragePeerage of IrelandFirst holderJohn Savile, 1st Baron PollingtonPresent holderJohn Savile, 8th Earl of MexboroughHeir presumptiveJohn Savile, Viscount PollingtonRemainder toThe 1st Earls’ heirs male of...

 

Jalur cahaya melalui interferometer Michelson. Interferometri adalah teknik superimposisi (menempatkan satu citra di atas citra lain) gelombang (biasanya elektromagnetik) untuk mendapatkan informasi mengenai gelombang tersebut. Interferometri merupakan teknik investigasi yang penting dalam bidang astronomi, serat optik, metrologi teknik, metrologi optik, oseanografi, seismologi, kimia, mekanika kuantum, fisika nuklir, fisika partikel, fisika plasma, penginderaan jauh, interaksi biomolekular, ...

لويس ناثانيل دي روتشيلد   معلومات شخصية الميلاد 5 مارس 1882   فيينا  الوفاة 15 يناير 1955 (72 سنة)   مونتيغو باي[1]  مكان الاعتقال فندق متروبول، فيينا  مواطنة النمسا سيسليثانيا  عائلة عائلة روتشيلد[2]  [3]   في المنصب19 مايو 1917  – 1918  الحياة العمل�...

 

Orenburg Pembagian administratif Rusiakotakota besar Оренбург (ru) flag of Orenburg (en) Tempat Negara berdaulatRusiaOblast di RusiaOblast OrenburgUrban okrug in Russia (en) City of Orenburg (en) Ibu kota dariOblast Orenburg Orenburgsky District (en) City of Orenburg (en) Orenburg Governorate (en) (1796–1928)Orenburg Uyezd (en) (1782–1928)Orenburg Governorate (en) (1744–1781)Orenburg Okrug (en) (1928–1930)Kirghiz Autonomous Socialist Soviet Republic (en) Negara...

 

The judiciary of Illinois is the unified court system of Illinois primarily responsible for applying the Constitution and law of Illinois. It consists of the Supreme Court, the Appellate Court, and circuit courts. The Supreme Court oversees the administration of the court system. Courts Circuit courts A Cook County Circuit Court courthouse in Rolling Meadows The Illinois circuit courts are trial courts of original jurisdiction. There are 24 judicial circuits in the state, each comprising one ...

Nottingham Challenger 2003Sport Tennis Data27 ottobre - 2 novembre CampioniSingolare Joachim Johansson Doppio Amir Hadad / Harel Levy 2002 2004 Il Nottingham Challenger 2003 è stato un torneo di tennis facente parte della categoria ATP Challenger Series nell'ambito dell'ATP Challenger Series 2003. Il torneo si è giocato a Nottingham in Gran Bretagna dal 27 ottobre al 2 novembre 2003 su campi in cemento indoor. Indice 1 Vincitori 1.1 Singolare 1.2 Doppio 2 Collegamenti esterni Vincitori Sing...

 

Dewan Perwakilan Rakyat Daerah Kabupaten Buton SelatanDewan Perwakilan RakyatKabupaten Buton Selatan2019-2024JenisJenisUnikameral Jangka waktu5 tahunSejarahSesi baru dimulai1 Oktober 2019PimpinanKetuaLa Ode Armada (PDI-P) sejak 25 Oktober 2019 Wakil Ketua IAliadi, S.Pd. (Hanura) sejak 25 Oktober 2019 Wakil Ketua IIPomili Womal, S.Pd.SD. (Demokrat) sejak 25 Oktober 2019 KomposisiAnggota20Partai & kursi  PDI-P (5)   NasDem (1)   PKB (1)   ...

 

 凡例壬生 忠岑 壬生忠岑(菊池容斎画『前賢故実』)時代 平安時代前期 - 平安時代中期生誕 貞観2年(860年)頃死没 延喜20年(920年)頃官位 無位、右衛門府生氏族 壬生氏子 忠見特記事項 三十六歌仙の一人。テンプレートを表示 壬生忠岑(狩野安信『三十六歌仙額』) 壬生 忠岑(みぶ の ただみね)は、平安時代前期の歌人。三十六歌仙の一人。 系譜 『三十六人�...

Questa voce o sezione sull'argomento Sport non cita le fonti necessarie o quelle presenti sono insufficienti. Puoi migliorare questa voce aggiungendo citazioni da fonti attendibili secondo le linee guida sull'uso delle fonti. Segui i suggerimenti del progetto di riferimento. Hockey su pistaUn'azione di gioco tra Italia e Svizzera al campionato europeo 2014FederazioneWorld Skate Inventato~ 1878, Regno Unito Componenti di una squadra5 ContattoNo GenereMaschileFemminile Indoor/outdoorIndoo...

 

Family of linear transformations Part of a series onSpacetime Special relativity General relativity Spacetime concepts Spacetime manifold Equivalence principle Lorentz transformations Minkowski space General relativity Introduction to general relativity Mathematics of general relativity Einstein field equations Classical gravity Introduction to gravitation Newton's law of universal gravitation Relevant mathematics Four-vector Derivations of relativity Spacetime diagrams Differential geometry ...