Ação de Polyakov

Em física, a ação de Polyakov é a ação bidimensional de uma teoria conforme de campos (CFT en inglés)[1] descrevendo a variedade[nota 1] bidimensional[2] que descreve a incorporação de uma corda no espaço-tempo na teoria das cordas. [3] [4] [5]

Uma parte da superfície de um universo de corda aberta

Esta ação foi introduzida por Stanley Deser e Bruno Zumino [6] e, independentemente, por L.Brink, Vecchia P.Di e PSHowe, [7] e passou a ser associada com Alexander Polyakov depois que ele fez uso dela na quantificação da corda.[8]

A ação lê

onde é a tensão da corda, é a métrica da variedade alvo[nota 2], é a folha de universo métrica e é o determinante de . A assinatura métrica é escolhido de tal modo que direções similares ao tempo são + e direções como espaço são -. A coordenada de folha de universo tipo espacial é chamada ao passo que a coordenada de folha de universo tipo tempo é chamada . Esta variedade é também conhecida como modelo σ não-linear.[9]

A ação de Polyakov deve ser completada pela ação de Liouville na teoria de campo de Liouville para descrever adequadamente as flutuações de cordas.

Relação com a ação Nambu-Goto

Escrevendo a equação de Euler-Lagrange para o tensor métrico se obtém que:

Sabendo também que:

Pode-se escrever o derivativo variacional da ação:

onde o que leva a:

Se o tensor métrico auxiliar da folha de universo é calculado a partir das equações de movimento:

e substituído de volta à ação, ele se torna a ação Nambu-Goto:

No entanto, a ação de Polyakov é mais facilmente quantificada porque é linear.

Notas

  1. Variedade é uma generalização da ideia de superfície. Existem vários tipos de variedades, de acordo com as propriedades que possuem. As mais usuais são as variedades topológicas e as variedades diferenciáveis.
  2. Um modelo σ não-linear descreve um campo escalar Σ que leva valores de uma variedade não-linear chamada de variedade alvo

Referências

  1. A. A. Belavin, Alexander M. Polyakov, and A. B. Zamolodchikov. Infinite conformal symmetry in two-dimensional quantum field theory. Nucl. Phys., B241:333–380, 1984
  2. Especificamente, ocorre em duas dimensões espaciais e uma dimensão temporal.
  3. Alexander M. Polyakov. Quantum geometry of bosonic strings. Phys. Lett., B103, 1981.
  4. A. M. Polyakov. String theory and quark confinement. Nucl. Phys. Proc. Suppl.,68:1–8, 1998
  5. A. M. Polyakov and V. Rychkov. Gauge fields - strings duality and the loop equation. Nucl. Phys., B581:116–134, 200
  6. S. Deser and B. Zumino: A complete action for the spinning string. Physics Letters B65 (1976) 369
  7. L. Brink, P. Di Vecchia and P.S. Howe: A locally supersymmetric and reparametrization invariant action for the spinning string. Physics Letters B65 (1976) 471.
  8. Harmonicity in supermanifolds and sigma models por J. Muñoz-Masqué e J. A. Vallejo
  9. Friedan, D. (1980). «Nonlinear Models in 2+ε Dimensions» (PDF). Physical Review Letters. 45. 1057 páginas. Bibcode:1980PhRvL..45.1057F. doi:10.1103/PhysRevLett.45.1057 
Ícone de esboço Este artigo sobre física é um esboço. Você pode ajudar a Wikipédia expandindo-o.

Read other articles:

2019 American film by John Crowley The GoldfinchTheatrical release posterDirected byJohn CrowleyScreenplay byPeter StraughanBased onThe Goldfinchby Donna TarttProduced by Nina Jacobson Brad Simpson Starring Ansel Elgort Oakes Fegley Aneurin Barnard Finn Wolfhard Sarah Paulson Luke Wilson Jeffrey Wright Nicole Kidman CinematographyRoger DeakinsEdited byKelley DixonMusic byTrevor GureckisProductioncompanies Amazon Studios[1] Color Force[1] Distributed byWarner Bros. Pictures[...

 

Australian actress (born 1991) Tessa JamesJames in September 2012Born (1991-04-17) 17 April 1991 (age 32)Melbourne, Victoria, AustraliaOccupation(s)Actress, modelYears active2006–presentSpouse Nate Myles ​(m. 2011)​Children3FamilyStephen James (father) Tessa James (born 17 April 1991) is an Australian actress. She made her acting debut as Anne Baxter in soap opera Neighbours in 2006. James played the role of Nicole Franklin in Home and Away from 2008 u...

 

العلاقات اليابانية الزيمبابوية اليابان زيمبابوي   اليابان   زيمبابوي تعديل مصدري - تعديل   العلاقات اليابانية الزيمبابوية هي العلاقات الثنائية التي تجمع بين اليابان وزيمبابوي.[1][2][3][4][5] مقارنة بين البلدين هذه مقارنة عامة ومرجعية للدولتي�...

American breed of domestic chicken Plymouth RockHens, barred plumageConservation statusrecoveringOther namesRockBarred RockCountry of originUnited StatesStandardAmerican Poultry AssociationUsedual-purpose breedTraitsWeightMale: Standard: minimum 3.4 kg (7.5 lb)[1]: 241 Bantam: maximum 1.4 kg (3 lb)[1]: 242 Female: Standard: minimum 2.9 kg (6.5 lb)[1]: 241 Bantam: maximum 1.1 kg (2.5 ...

 

NBA Eastern ConferenceSport Pallacanestro Parte diNBA Paese Stati Uniti Canada Cadenzaannuale Aperturaottobre Chiusuragiugno Partecipanti15 squadre StoriaFondazione1970 Detentore Miami Heat Record vittorie Boston Celtics (22) Modifica dati su Wikidata · Manuale La Eastern Conference è una delle due conference che compongono la NBA, l'altra conference è la Western Conference. La Eastern Conference raggruppa le squadre appartenenti agli stati orientali degli Stati Un...

 

National constitutional law For the previous constitution, see Persian Constitution of 1906. Constitution of theIslamic Republic of IranOverviewJurisdictionIslamic Republic of IranCreated24 October 1979Ratified3 December 1979Date effective3 December 1979Government structureBranches3Head of stateSupreme LeaderChambersIslamic Consultative AssemblyGuardian CouncilExecutivePresident led GovernmentPrime Minister (defunct)JudiciaryJudicial system of the Islamic Republic of IranSupreme Court of...

Swedish politician (born 1970) Anna Kinberg BatraAnna Kinberg Batra in 2015Governor of Stockholm CountyIncumbentAssumed office 1 March 2023MonarchCarl XVI GustafPrime MinisterUlf KristerssonPreceded bySven-Erik ÖsterbergLeader of the OppositionIn office10 January 2015 – 1 October 2017MonarchCarl XVI GustafPrime MinisterStefan LöfvenPreceded byFredrik ReinfeldtSucceeded byUlf KristerssonLeader of the Moderate PartyIn office10 January 2015 – 1 October 2017DeputyPeter...

 

Pour les articles homonymes, voir Gouvernement Pierre Laval. Gouvernement Pierre Laval (2) Troisième République Données clés Président de la République Paul Doumer Président du Conseil Pierre Laval Formation 13 juin 1931 Fin 12 janvier 1932 Durée 6 mois et 30 jours Composition initiale Coalition AD - RI - PRS - FR - PDP - dissidents PRRRS Représentation XIVe législature 364  /  602 Gouvernement Pierre Laval I Gouvernement Pierre Laval III modifier - modifier le ...

 

Betsy Clifford Nazionalità  Canada Altezza 162 cm Peso 57 kg Sci alpino Specialità Discesa libera, slalom gigante, slalom speciale, combinata Squadra Ottawa SC Termine carriera 1979 Palmarès Competizione Ori Argenti Bronzi Mondiali 1 1 0 Trofeo Vittorie Coppa del Mondo - Slalom 1 trofeo Can-Am Cup 1 trofeo Per maggiori dettagli vedi qui   Modifica dati su Wikidata · Manuale Elizabeth Anne Clifford detta Betsy (Ottawa, 15 ottobre 1953) è un'ex sciatrice alpina canadese, ca...

Skyscraper in Detroit 1300 Lafayette East CooperativeGeneral informationTypeResidentialLocationDetroit, Michigan United StatesCompleted1964Technical detailsFloor count30Design and constructionArchitect(s)Gunnar Birkerts, Birkerts & Straub The 1300 Lafayette East Cooperative is a large, 336 unit luxury housing cooperative in the Lafayette Park neighborhood of the near-east side of Detroit, Michigan. The building is notable for its address 1300 displayed in giant numerals on the North ...

 

This article has multiple issues. Please help improve it or discuss these issues on the talk page. (Learn how and when to remove these template messages) The article's lead section may need to be rewritten. Please help improve the lead and read the lead layout guide. (August 2021) (Learn how and when to remove this message) This article needs additional citations for verification. Please help improve this article by adding citations to reliable sources. Unsourced material may be challenged an...

 

1998 single by Brandy For other uses, see Have You Ever (disambiguation). Have You Ever?Single by Brandyfrom the album Never Say Never B-sideHappyReleasedOctober 6, 1998 (1998-10-06)[1]Studio Chartmaker (Malibu, California) Record Plant (Hollywood, California) GenrePop[2]Length4:33LabelAtlanticSongwriter(s)Diane WarrenProducer(s)David FosterBrandy singles chronology Top of the World (1998) Have You Ever? (1998) Angel in Disguise (1999) Music videoHave You Ever o...

F1 22 Logo permainanPublikasiWW: 1 Juli, 2022[a]GenreBalapanLisensiLisensi proprietarium Bahasa Daftar Belanda, Inggris, Italia, Jepang, Jerman, Polandia, Portugis Brasil, Prancis, Rusia, Spanyol dan Tionghoa Sederhana 60 Karakteristik teknisPlatformWindows, PlayStation 5, PlayStation 4, Xbox Series X dan S dan Xbox One MesinEGO Engine 4.0ModePermainan video pemain tunggal, permainan video multipemain dan co-op mode Formatdistribusi digital Metode inputpapan tombol komputer, tetikus d...

 

  لمعانٍ أخرى، طالع البيرة (توضيح). 31°54′19″N 35°12′54″E / 31.905141666667°N 35.214958333333°E / 31.905141666667; 35.214958333333   البيرة   البيرة (رام الله) البيرة (رام الله)شعار بلدية البيرة تاريخ التأسيس القرن السادس عشر تأسيس البلدية: 1925 تقسيم إداري البلد  فلسطين[1] المحافظة مح...

 

Accompaniment figure Audio playback is not supported in your browser. You can download the audio file.Sixteenth note fill in a rock/popular groove played on a drum kit.[1]In popular music, a fill is a short musical passage, riff, or rhythmic sound which helps to sustain the listener's attention during a break between the phrases of a melody. The terms riff and fill are sometimes used interchangeably by musicians, but [while] the term riff usually refers to an exact musical phrase repe...

Violin Sonata No. 2Chamber music by George EnescuEnescu in the 1910sKeyF minorOpus6Composed1899 (1899)DedicationJoseph and Jacques ThibaudPerformed22 February 1900 (1900-02-22) ParisMovements3Scoringviolinpiano The Sonata No. 2 for violin and piano in F minor, Op. 6, is the second violin sonata by the Romanian composer George Enescu, completed in 1899. History After six years of study in Vienna, where he acquired German discipline and experienced the grandiose cultural sum...

 

Peruvian tennis player (1936–2020) In this Spanish name, the first or paternal surname is Olmedo and the second or maternal family name is Rodríguez. Alex OlmedoAlex Olmedo in Noordwijk (the Netherlands), 1964Full nameAlejandro Olmedo RodríguezCountry (sports) Peru United StatesBorn(1936-03-24)March 24, 1936Arequipa, PeruDiedDecember 9, 2020(2020-12-09) (aged 84)Los Angeles, California, USHeight5 ft 10 in (1.78 m)Turned pro1960Retired19...

 

Ethnic group in Afghanistan Ethnic group Punjabis in Afghanistanافغانستان وِچ پنجابی ਅਫਗਾਨਿਸਤਾਨ ਵਿੱਚ ਪੰਜਾਬੀTotal population3,000[1][2]Regions with significant populationsKabul and other regionsLanguagesPunjabi (native)Pashto · DariReligionIslam · Sikhism · HinduismRelated ethnic groupsPunjabi diaspora Punjabis in Afghanistan (Punjabi: افغانستان وِچ پنجابی/�...

Lingue gallo-italicheParlato inEuropa: Italia Svizzera FranciaSan Marino Monaco Sudamerica: Argentina Brasile TassonomiaFilogenesiLingue indoeuropee Lingue italiche  Lingua latina   Lingue romanze    Lingue italo-occidentali     Lingue gallo-/italo-romanze      Lingue gallo-italiche Codici di classificazioneISO 639-2roa Linguist Listgait (EN) Glottologgall1279...

 

VTA light rail station in San Jose, California This article has multiple issues. Please help improve it or discuss these issues on the talk page. (Learn how and when to remove these template messages) This article relies largely or entirely on a single source. Relevant discussion may be found on the talk page. Please help improve this article by introducing citations to additional sources.Find sources: Tasman station – news · newspapers · books · scholar...