Średnia po stanach – średnia zmiennych dynamicznych (wielkości mikroskopowych), obliczona po zespole statystycznym Gibbsa. W mechanice statystycznej tak obliczona średnia wielkości mikroskopowych odpowiada wielkości makroskopowej.
Obliczanie
Wielkość zależna jest od położeń i pędów cząstek. Skrótowy zapis oznacza Z definicji średnia po stanach to:
gdzie jest gęstością prawdopodobieństwa, a oznacza miarę w 6N-wymiarowej przestrzeni fazowej. Miarę tę określa wzór:
gdzie czynnik wynika z nierozróżnialności cząstek, a stała Plancka pojawia się jako konsekwencja zasady nieoznaczoności Heisenberga. Funkcja gęstości prawdopodobieństwa ma własność:
Zwykle w obliczeniach mechaniki statystycznej zakłada się, że średnia po stanach jest równa średniej czasowej z danej wielkości fizycznej. To założenie jest treścią tzw. hipotezy ergodycznej.