Principia mathematica

Principia mathematica – zamierzone na cztery tomy dzieło Bertranda Russella i Alfreda Northa Whiteheada dotyczące podstaw matematyki, tworzone i publikowane w latach 19101913. Jego celem było sprowadzenie matematyki do logiki i wyprowadzenie twierdzeń tej pierwszej z układu aksjomatów i reguł wnioskowania.

Dzieło Russella i Whiteheada inspirowane było wcześniejszymi pracami Gottloba Fregego z zakresu logiki, a dokładniej chęcią usunięcia z nich sprzeczności odkrytych przez Russella. Chodziło przede wszystkim o wyeliminowanie założeń prowadzących do paradoksów w rodzaju paradoksu Russella powstających w sytuacji, gdy dopuszczamy zdania mówiące o sobie samych.

Trzy tomy Principiów dotyczą jedynie teorii mnogości, liczb kardynalnych, porządkowych i rzeczywistych, lecz wydaje się, że dalsza droga jest jasna i w zasadzie całą matematykę można sprowadzić do logiki. Otwarty pozostał jednak problem niesprzeczności i zupełności systemu aksjomatów przyjętych przez Russella i Whiteheada. Dwadzieścia lat po napisaniu Principiów znalazł on nieoczekiwane rozwiązanie w twierdzeniu Gödla o niezupełności.

Ostatecznie powstały trzy tomy Principiów, Alfred North Whitehead zrezygnował z prac nad czwartym tomem.

Z wywiadu udzielonego przez Russella „Daily Herald” z okazji jego 90 urodzin pochodzi znana anegdota – Russell stwierdził żartobliwie, że Principia było zdolne przeczytać tylko sześciu ludzi, z których trzech było Polakami[1]. Według Klemensa Szaniawskiego żart ten kryje ziarno prawdy, gdyż istotnie niewielu jest ludzi zdolnych przeczytać długi i bardzo trudny tekst Principiów, a jednocześnie Russell bardzo cenił dokonania logików polskich, zwłaszcza Leona Chwistka.

Przypisy

  1. Klemens Szaniawski, Przedmowa do pierwszego wydania, w: Bertrand Russell, Autobiografia 1872-1914, Warszawa 1996

Linki zewnętrzne

Read other articles:

يفتقر محتوى هذه المقالة إلى الاستشهاد بمصادر. فضلاً، ساهم في تطوير هذه المقالة من خلال إضافة مصادر موثوق بها. أي معلومات غير موثقة يمكن التشكيك بها وإزالتها. (ديسمبر 2018) الدوري البلجيكي الدرجة الأولى الموسم 1932–33 البلد بلجيكا  المنظم الاتحاد الملكي البلجيكي لكرة القدم ...

 

Eric CampbellLahirAlfred Eric Campbell(1880-04-26)26 April 1880Cheshire, InggrisMeninggal20 Desember 1917(1917-12-20) (umur 37)Los Angeles, California, Amerika SerikatTahun aktif1916–1917Suami/istriFanny Gertrude Robotham (1901–1917) Pearl Gillman (1917) Alfred Eric Campbell (26 April 1880 – 20 Desember 1917), adalah seorang pemeran Inggris. Ia adalah anggota penting dari perfilman Charlie Chaplin, yang memerankan seorang penindas, dan tampil dalam sebelas film ...

 

Protein-coding gene in humans GPR101IdentifiersAliasesGPR101, GPCR6, PAGH2, G protein-coupled receptor 101, PITA2External IDsOMIM: 300393 MGI: 2685211 HomoloGene: 14273 GeneCards: GPR101 Gene location (Human)Chr.X chromosome (human)[1]BandXq26.3Start137,023,929 bp[1]End137,033,995 bp[1]Gene location (Mouse)Chr.X chromosome (mouse)[2]BandX|X A6Start56,542,028 bp[2]End56,549,117 bp[2]RNA expression patternBgeeHumanMouse (ortholog)Top expresse...

2014 mobile game 2014 video gameFinal Fantasy AgitoDeveloper(s) Square Enix Tayutau K.K. Publisher(s)Square EnixDirector(s)Masayasu NishidaProducer(s)Hajime TabataDesigner(s)Kensuke ShimodaArtist(s)Sayoko HoshinoComposer(s)Takeharu IshimotoSeries Fabula Nova Crystallis Final Fantasy EngineUnityPlatform(s)iOS, AndroidReleaseJP: May 14, 2014Genre(s)Role-playingMode(s)Single-player, multiplayer Final Fantasy Agito (Japanese: ファイナルファンタジーアギト, Hepburn: Fainaru Fantajī A...

 

1958 U.S. law creating NASA National Aeronautics and Space Act of 1958Other short titlesThe Space Act of 1958Long titleAn Act to provide for research into problems of flight within and outside the earth's atmosphere, and for other purposes.Acronyms (colloquial)NASAEnacted bythe 85th United States CongressEffectiveJuly 29, 1958CitationsPublic law85-568Statutes at Large72 Stat. 426-2CodificationTitles amended42 U.S.C.: Public Health and Social WelfareU.S.C. sections created42 U.S...

 

New York City artists group For Google Colab, see Project Jupyter. Collaborative Projects Colab is the commonly used abbreviation of the New York City artists' group Collaborative Projects,[1] which was formed after a series of open meetings between artists of various disciplines.[2][3] History Colab members came together as a collective in 1977,[4] first using the name Green Corporation, and initially received a National Endowment for the Arts (NEA) Workshop G...

Kerajaan Kahuripan1019–1043Arca perwujudan Airlangga sebagai Dewa Wisnu mengendarai Garuda. Koleksi Museum Trowulan, Jawa Timur.Ibu kota Wwatan Mas(1019-1031) Kahuripan(1032-1042) Dahanapura(1042-1043) Bahasa yang umum digunakanJawa Kuno, SansekertaAgama Hinduisme, Buddhisme, AnimismePemerintahanMonarkiRaja • 1019 - 1043 Airlangga• 1042 - 1043 Sanggramawijaya Tunggadewi Sejarah • Didirikan 1019• Airlangga menyatukan kembali bekas kerajaan Medang se...

 

Defunct transcontinental railroad company in the northwest United States (1864-1970) Northern Pacific RailwayThe Northern Pacific Railway system mapThe former Northern Pacific Office Buildingin Tacoma, WashingtonOverviewHeadquartersSaint Paul, MinnesotaKey people J. Gregory Smith,President (1865–1872) Henry Villard, President & primary financier (1881–1884) Adna Anderson,Chief Engineer (1880–1888) FounderJosiah Perham Reporting markNPLocaleAshland, Wisconsin andSaint Paul, Minnesota...

 

Pour les articles homonymes, voir Siège de Gérone. Siège de Gérone Informations générales Date 6 mai - 12 décembre 1809 Lieu Gérone, Espagne Issue Victoire française Belligérants Empire français Confédération du Rhin Royaume d'Italie Espagne Commandants Laurent de Gouvion-Saint-Cyr puisPierre Augereau Mariano Álvarez de Castro Blacke depuis l'extérieur Forces en présence 35 000 hommes 40 canons 5 600 hommes<Abu Malik Abd al-Wahidbr />200 canons ...

2020年夏季奥林匹克运动会波兰代表團波兰国旗IOC編碼POLNOC波蘭奧林匹克委員會網站olimpijski.pl(英文)(波兰文)2020年夏季奥林匹克运动会(東京)2021年7月23日至8月8日(受2019冠状病毒病疫情影响推迟,但仍保留原定名称)運動員206參賽項目24个大项旗手开幕式:帕维尔·科热尼奥夫斯基(游泳)和马娅·沃什乔夫斯卡(自行车)[1]闭幕式:卡罗利娜·纳亚(皮划艇)&#...

 

Gregor Brück by Lucas Cranach the Elder The site of Gregor Bruck's house, Marktplatz, Wittenberg The grave of Gregor Brück in Jena Stadtkirche Gregor Brück (1485–1557) was a 16th-century figure of the Reformation, and Saxon Chancellor. He is also known by his latinised name Gregorius Pontanus. His role in the early 16th century in Germany, as legal advisor to Martin Luther, may be said to earn him the title of Lawyer of the Reformation. Although now much forgotten or unknown, his con...

 

Political party in the London Borough of Tower Hamlets Aspire LeaderLutfur RahmanTreasurerJahed ChoudhuryNominating OfficerLilian CollinsFounded26 January 2018Preceded byTower Hamlets FirstHeadquarters28 Castlemain StreetWhitechapelLondonIdeologyDemocratic socialismPopulism[1][2][3]Political positionLeft-wing[4]Tower Hamlets Council24 / 45Politics of the United KingdomPolitical partiesElections Aspire is a political party in the London Borough of Towe...

Superfamily of insects For the Pandanus planthopper, see Jamella australiae and Pandanus tectorius § Ecology. PlanthopperTemporal range: Carboniferous–Recent PreꞒ Ꞓ O S D C P T J K Pg N Flatida rosea (Flatidae)adults and nymphs Scientific classification Domain: Eukaryota Kingdom: Animalia Phylum: Arthropoda Class: Insecta Order: Hemiptera Suborder: Auchenorrhyncha Infraorder: FulgoromorphaEvans, 1946 Families See text A planthopper is any insect in the infraorder Fulgoromorpha, ...

 

22nd United States national census Twenty-second census of the United States ← 1990 April 1, 2000 2010 → U.S. Census Bureau seal2000 U.S. census logoGeneral informationCountryUnited StatesResultsTotal population281,421,906 ( 13.2%)Most populous ​stateCalifornia (33,871,648)Least populous ​stateWyoming (493,782) The 2000 United States census, conducted by the Census Bureau, determined the resident population of the United States on April 1,...

 

Former province of Japan Location of Hidaka Province c. 1869. Hidaka Province (日高国, Hidaka-no kuni) was a short-lived province located in Hokkaidō. It corresponded to modern-day Hidaka Subprefecture. The name 'Hidaka is derived from Hitakami (日高見国). History After 1869, the northern Japanese island was known as Hokkaido;[1] and regional administrative subdivisions were identified, including Hidaka Province.[2] August 15, 1869 Hidaka Province established with 7 di...

Military of Belize Belize Defence ForceFlag of the Belize Defence ForceMottoShoulder To ShoulderFounded1 January 1978; 46 years ago (1978-01-01)Service branchesGround forcesAir WingHeadquartersPrice Barracks, LadyvilleWebsitewww.bdf.mil.bzLeadershipCommander-in-ChiefCharles III, King of Belize, represented by Froyla Tzalam, Governor-General of BelizeMinister of National Defence and Border SecurityFlorencio Marin Jr.Commander of the Defence ForceBrigadier General Azariel Lori...

 

Golf at the Olympics Golfat the Games of the II OlympiadVenueCompiègne Club, CompiègneDate2–3 October 1900CompetitorsMore than 22 from 4 nations1904 → Part of a series on Golf at the 1900 Summer Olympics Events Individual menwomen vte The 1900 Summer Olympics took place in Paris, France. Two of the golf events that were contested in early October at the Compiègne Club, Compiègne as part of the Exposition Universelle, the men's and women's individual stroke play comp...

 

В Википедии есть статьи о других людях с такой фамилией, см. Болтин; Болтин, Иван.Иван Никитич Болтин герб дворянского рода Болтиных член Военной коллегии 24 ноября 1788 — 17 октября 1792 Монарх Екатерина II прокурор Военной коллегии 15 марта 1781 — 17 октября 1792 Монарх Екатери...

Multi-purpose arena in Mannheim, Baden-Württemberg, Germany For the American arena, see SAP Center.For the Munich arena, see SAP Garden. SAP ArenaLocationMannheim, GermanyCoordinates49°27′50.9″N 8°31′04.7″E / 49.464139°N 8.517972°E / 49.464139; 8.517972OwnerDietmar HoppCapacity11,000–15,000 (concerts) 14,500 (handball) 13,900 (basketball) 13,600 (ice hockey)ConstructionBroke groundNovember, 2002OpenedSeptember 2, 2005Construction cost€ 70 millionArchit...

 

Statistical description for the behavior of fermions Statistical mechanics Thermodynamics Kinetic theory Particle statistics Spin–statistics theorem Indistinguishable particles Maxwell–Boltzmann Bose–Einstein Fermi–Dirac Parastatistics Anyonic statistics Braid statistics Thermodynamic ensembles NVE Microcanonical NVT Canonical µVT Grand canonical NPH Isoenthalpic–isobaric NPT Isothermal–isobaric Models Debye Einstein Ising Potts Potentials Internal energy Enthalpy Helmholtz free ...