Dowodzi się, że każda krzywa eliptyczna jest rozmaitością abelową – można na niej zdefiniować w sensowny (zgodny z własnościami geometryczno-algebraicznymi) sposób operację grupową („dodawanie” punktów), dla której jest elementem neutralnym.
Można również pokazać, że każdą krzywą eliptyczną nad dowolnym ciałem można zapisać w postaci równania
dla pewnych stałych gdzie to współrzędne punktów na płaszczyźnie Reprezentacja taka z reguły nie jest jednoznaczna. W szczególnych przypadkach definicję tę można znacznie uprościć. Równanie to przedstawia tzw. modelafiniczny krzywej eliptycznej.
Postać normalna krzywej
W przypadku, gdy charakterystyka ciała jest inna, niż 2 i 3 (czyli, w szczególności, np. jeśli krzywa jest zdefiniowana nad ciałem liczb zespolonych), równanie afiniczne krzywej można uprościć do postaci
Dla ciała charakterystyki 3 najbardziej ogólną postacią równania jest
Zastosowania
Dzięki zastosowaniu krzywych eliptycznych udało się rozwiązać jeden z najstarszych problemów matematycznych: przeprowadzić dowód wielkiego twierdzenia Fermata[1]. Problem ten pozostawał nierozwiązany przez ponad 300 lat, zaś jego rozwiązanie podał Wiles w roku 1993, korzystając właśnie z pojęć z zakresu krzywych eliptycznych. Dowód jednak zawierał luki, które wraz ze współpracownikami Wilesowi udało się usunąć w roku 1994.
Jednym z kluczowych zastosowań krzywych eliptycznych współcześnie jest kryptografia.