Kallisto jest o 1% mniejsza od Merkurego, lecz około trzykrotnie od niego lżejsza. Promień orbity wynosi około 1 882 700 km[1]. W przeciwieństwie do trzech pozostałych, nie jest częścią rezonansu orbitalnego i nie jest w tak znacznym stopniu poddany sile pływowej[2]. Kallisto obraca się synchronicznie i zawsze jest zwrócona do Jowisza tą samą stroną. W przeciwieństwie do wewnętrznych satelitów, jest mniej narażona na działanie magnetosfery gazowego giganta[3].
Kallisto jest księżycem lodowym, składa się w przybliżeniu z równej ilości skał i lodu. Jej średnia gęstość to około 1,83 g/cm³. Na powierzchni metodą spektroskopową wykryto lód wodny, dwutlenek węgla, krzemiany oraz związki organiczne. Obserwacje sondy Galileo wskazują, że Kallisto może mieć małe krzemianowe jądro i prawdopodobnie ocean ciekłej wody na głębokości ponad 100 km[4][5].
Odkrycie Kallisto przypisywane jest zwyczajowo Galileuszowi, który skierował na Jowisza skonstruowaną przez siebie lunetę i dostrzegł w pobliżu tej planety cztery stale zmieniające swe położenie „gwiazdy”. Były to największe księżyce Jowisza, które później ochrzczono „galileuszowymi”. W 1614 roku ukazało się dzieło niemieckiego astronoma Simona MariusaMundus Jovialis, w którym twierdził on, że dostrzegł te cztery obiekty na kilka dni przed Galileuszem. Galileusz określił to dzieło jako plagiat.
Nazwa
Nazwa księżyca, zaproponowana przez Mariusa, przyjęła się dopiero w XX wieku. Kallisto w mitologii greckiej była jedną z kochanek Zeusa, która została zamieniona w niedźwiedzia i przeniesiona na firmament niebieski jako Wielka Niedźwiedzica.
Powierzchnia i budowa wewnętrzna
Kallisto ma bardzo starą, usianą kraterami powierzchnię, nie przejawiającą oznak aktywności wulkanicznej czy ruchu płyt tektonicznych. Dominują różnorodne kratery uderzeniowe, ich łańcuchy, skarpy oraz grzbiety[6]. W małej skali powierzchnia jest zróżnicowana, składa się z małych, lodowych osadów na szczytach wzniesień otoczonych przez nizinne, gładkie okrycie z ciemnego materiału[5][7]. Jaśniejsze kratery są zapewne młodsze od ciemniejszych. Wokół największych kraterów rozchodzą się koncentryczne pierścienie, w ich centrach znajdują się jasne obszary o strukturze zatartej przez procesy geologiczne, tzw. palimpsesty.
Kallisto ma najciemniejszą powierzchnię spośród księżyców galileuszowych, odbija tylko ok. 17% światła słonecznego.
Na powierzchni nie ma większych łańcuchów górskich, ani śladów aktywności tektonicznej. Pod grubą na ok. 200 km skorupą lodową najprawdopodobniej znajduje się ocean słonej wody – warstwa ok. 10 km. Dowodem istnienia pod skorupą Kallisto oceanu wodnego jest jego słabe pole magnetyczne o zmiennym natężeniu. Słona woda przewodzi ładunki elektryczne, które indukują owo pole.
Istnienie oceanu pod powierzchnią Kallisto oraz morskiego życia jest kwestią otwartą[8].
W głębi księżyca znajduje się mieszanka krzemianów (60%) z wodą (40%), przy czym im głębiej tym więcej krzemianów. W odróżnieniu od pozostałych księżyców galileuszowych, Kallisto wydaje się nie mieć wnętrza zróżnicowanego na jądro i płaszcz.
Atmosfera
Obserwacje sondy Galileo wskazują na istnienie bardzo rzadkiej atmosfery, składającej się z dwutlenku węgla i molekularnego tlenu[9][10].
Kolonizacja
Ze względu na niski poziom promieniowania Kallisto jest uważana ze jedno z najlepszych miejsc do założenia bazy pod przyszłą eksplorację systemu Jowisza[11].
W 2003 roku NASA przeprowadziła badania o nazwie HOPE (Human Outer Planets Exploration) dotyczące przyszłości ludzkiej eksploracji Układu Słonecznego, które dotyczyły między innymi Kallisto[11][12].
W rezultacie zasugerowano, że możliwa jest budowa bazy na powierzchni Kallisto, która zajmowałaby się produkcją paliwa przeznaczonego do przyszłej eksploracji Układu Słonecznego[13]. Za ulokowaniem bazy na Kallisto, obok niskiego promieniowania spowodowanego znaczną odległością od Jowisza, przemawia stabilność geologiczna. Taka baza ułatwiłaby przeprowadzanie dokładniejszych badań Europy oraz byłaby dogodnym punktem postoju statków kosmicznych lecących w dalsze zakątki Układu Słonecznego ze względu na możliwość wykorzystania asysty grawitacyjnej Jowisza[12].
W grudniu 2003 roku w raporcie NASA zasugerowano, że wysłanie misji załogowej na Kallisto będzie możliwe w latach 40. XXI wieku[14].
↑ abAdam P. Showman; Renu Malhotra. The Galilean Satellites. „Science”. 286 (5437), s. 77–84, 1999-10. [dostęp 2011-01-06]. (ang.).
↑Greeley, R.; Klemaszewski, J. E.; Wagner, R.; the Galileo Imaging Team. Galileo views of the geology of Callisto. „Planetary and Space Science”. 48 (9), s. 829–853, August 2000. DOI: 10.1016/S0032-0633(00)00050-7. Bibcode: 2000P&SS...48..829G. (ang.).
↑Callisto. University of Colorado. [dostęp 2011-01-06]. (ang.).
↑Robert W. Carlson. A tenuous carbon dioxide atmosphere on Jupiter’s moon Callisto. „Science”. 283 (5403), s. 820–821, 1999. DOI: 10.1126/science.283.5403.820.
↑M.C. Liang, B.F. Lane, R.T. Pappalardo, M. Allen i inni. Atmosphere of Callisto. „Journal of Geophysical Research: Planets”. E2. 110, 2005. DOI: 10.1029/2004JE002322.