Autodysocjacja wody

Temperaturowa zależność iloczynu jonowego wody (przy stałym ciśnieniu absolutnym 25 MPa)
CiÅ›nieniowa zależność iloczynu jonowego wody (przy staÅ‚ej temperaturze 25 Â°C)
Zależność iloczynu jonowego wody od siÅ‚y jonowej (przy staÅ‚ej temperaturze 25 Â°C). Stężenie w jednostkach mol/L NaCl.

Autodysocjacja wody lub autoprotoliza wody – samorzutna autodysocjacja cząsteczek wody pozostających w stanie ciekłym. Proces ten ma duże znaczenie praktyczne – decyduje m.in. o zdolności wody do rozpuszczania substancji jonowych a stała równowagi tej reakcji stanowi podstawę skali pH.

Przebieg reakcji autodysocjacji wody:

H2O + H2O ⇌ H3O+ + OH−

Stałe reakcji

Zaniedbując aktywności, stałą równowagi tej reakcji można zdefiniować wzorem:

W warunkach standardowych ma ona wartość 3,23×10−18 co w praktyce oznacza, że jest ona bardzo silnie przesunięta w stronę substratu, czyli niezdysocjowanej formy wody. W idealnie czystej wodzie w warunkach standardowych stężenie jonów [H3O]+ i [OH]− wynosi ok. 10−7 mol/l[1].

Stała kwasowa dana wzorem:

Ka = Keq[H2O] = ([H3O+][OH−])/[H2O]
gdzie [H2O] ≈ 55,6 mol/dm3

ma w warunkach standardowych wartość 1,8×10−16[2].

Podane powyżej wartości otrzymane są przy użyciu stężenia molowego wody. Wartości numeryczne tych stałych byłyby znacząco inne w przypadku użycia aktywności rozpuszczalnika zamiast jego stężenia, ponieważ aktywność czystego rozpuszczalnika jest w termodynamice chemicznej zwykle przyjmowana jako równa jedności, podczas gdy stężenie molowe czystej wody wynosi około 55,6 mol/l.

Iloczyn jonowy wody

W przypadku rozcieńczonych roztworów wodnych można przyjąć, że stężenie molowe niezdysocjowanej formy wody jest stałą, a aktywność czystego rozpuszczalnika wynosi 1. Obserwacja ta stanowi podstawę definicji iloczynu jonowego wody. Zaniedbując aktywności:

Kw = Ka[H2O] = K(dys, w)[H2O]2 = [H3O+][OH−]

Wartość iloczynu jonowego wody w temperaturze pokojowej wynosi ok. 10−14.

Podobnie jak dla innych bardzo małych wartości wywodzących się z definicji stałej równowagi, jak iloczyn rozpuszczalności czy stała dysocjacji lub przy określaniu stężenia jonów hydroniowych oraz wodorotlenowych, wartość iloczynu jonowego podaje się jako −log10Kw (p jest operatorem oznaczającym obliczenie −log10):

pKw = −log10Kw

Wartość pKw ≈ 14 (w temperaturze pokojowej).

W innych temperaturach/ciśnieniach

Przy normalnym ciÅ›nieniu atmosferycznym woda jest ciekÅ‚a w zakresie 0–100 Â°C. Wraz ze wzrostem temperatury dysocjacja staje siÄ™ Å‚atwiejsza (reakcja endotermiczna) i iloczyn jonowy Kw roÅ›nie, a pKw spada. Wartość pKw zmienia siÄ™ od ok. 14,95 w temperaturze 0 Â°C przez 14,0 (25 Â°C) i 13,0 (60 Â°C) do 11,25 w temperaturze 100 Â°C. W mniejszym stopniu, iloczyn jonowy wody zależy również od ciÅ›nienia (zwiÄ™kszona dysocjacja przy wyższym ciÅ›nieniu). W warunkach podwyższonego ciÅ›nienia, woda może pozostać ciekÅ‚a aż do temperatury krytycznej. Iloczyn jonowy ciekÅ‚ej wody zwiÄ™ksza siÄ™ ze zwiÄ™kszajÄ…cÄ… siÄ™ temperaturÄ… aż do temperatury okoÅ‚o 260 Â°C, a potem spada. WÅ‚aÅ›ciwoÅ›ci kwasowo-zasadowe wody w szerokim zakresie temperatur i ciÅ›nieÅ„ majÄ… duże znaczenie praktyczne (na przykÅ‚ad, korozja w elektrowniach).

ZwiÄ…zek z pH

Wartość pKw ma kluczowe znaczenie dla definicji skali pH. Między pH i pKw występuje zależność:

pH + pOH = pKw

W idealnie czystej wodzie stężenia jonów [OH]− i [H3O]+ są sobie równe, stąd:

oraz (po zlogarytmowaniu obu stron):

pH = pOH = ½pKw

Wartość pH = pOH w czystej wodzie, tzw. pH neutralne, wynosi 7,00 (25 Â°C, ciÅ›nienie absolutne 100 kPa) i okreÅ›la umowny Å›rodek skali pH25 Â°C. Generalnie, wartość neutralnego pH zależy od temperatury (i w mniejszym stopniu od ciÅ›nienia) i jest równe ½pKw.

Zobacz też

 Wykaz literatury uzupeÅ‚niajÄ…cej: Autodysocjacja wody.

Przypisy

  1. ↑ 2. Równowagi chemiczne. W: Douglas A. Skoog, Donald M. West, James F. Holler i Stanley R. Crouch: Podstawy Chemii Analitycznej. T. 1. Warszawa: Wydawnictwo Naukowe PWN, 2006, s. 232. ISBN 978-83-01-14885-0.
  2. ↑ John McMurry: Chemia organiczna. Wyd. 3. T. 1. Warszawa: PWN, 2005, s. 45–46. ISBN 83-01-14406-8.