Pierścień różniczkowy, ciało różniczkowe i algebra różniczkowa – odpowiednio: pierścień, ciało i algebra wyposażone w różniczkowanie, czyli funkcję jednoargumentową spełniającą prawo iloczynu Leibniza. Naturalnym przykładem ciała różniczkowego jest ciało funkcji wymiernych nad liczbami zespolonymi jednej zmiennej, gdzie różniczkowaniem jest różniczka względem
Pierścień różniczkowy
Pierścień różniczkowy to pierścień wyposażony w co najmniej jedno różniczkowanie
z których każde spełnia prawo Leibniza
dla dowolnych Należy pamiętać, że pierścień nie musi być przemienny, a więc w pewnym stopniu standardowa forma wzoru na iloczyn w kontekście przemiennym, może być fałszywa. Jeżeli jest mnożeniem w pierścieniu, to prawo iloczynu jest tożsamością
gdzie oznacza funkcję odwzorowującą parę na parę
Ciało różniczkowe
Ciało różniczkowe to ciało z różniczkowaniem. Teoria ciał różniczkowych, DF (od ang. differential field), jest zasadzona na zwykłych aksjomatach ciała poszerzonych o dwa dodatkowe określające różniczkowanie. Tak jak wyżej, różniczkowanie musi spełniać prawo iloczynu Leibniza dla elementów z ciała, tzn. dla dowolnych dwóch elementów z ciała jest
ponieważ mnożenie w ciele jest przemienne. Różniczkowanie musi być również rozdzielne względem dodawania w ciele:
Jeżeli jest ciałem różniczkowym, to ciało stałych dane jest jako
Algebra różniczkowa
Algebra różniczkowa nad ciałem to -algebra gdzie różniczkowania komutują (są przemienne) z działaniami ciała, tzn. dla każdego oraz zachodzi
W zapisie bezwskaźnikowym, jeżeli jest homomorfizmem pierścieni określającym mnożenie skalarne w algebrze, to zachodzi
Jak wyżej, różniczkowanie musi zachowywać prawo Leibniza względem mnożenia w algebrze i musi być liniowe względem dodawania, a więc dla każdego oraz jest
oraz
Różniczkowanie w algebrze Liego
Różniczkowanie w algebrze Liego jest odwzorowaniem liniowym spełniającym prawo Leibniza:
Dla dowolnego wyrażenie jest różniczkowaniem na które spełnia tożsamość Jacobiego. Każde takie różniczkowanie nazywane jest różniczkowaniem wewnętrznym.
Przykłady
Jeżeli ma jedynkę, to ponieważ Przykładowo w ciele różniczkowym charakterystyki zero liczby wymierne zawsze są podciałem ciała stałych.
Każde czyste ciało może być interpretowane jako ciało różniczkowe stałych.
Ciało ma unikatową strukturę jako ciało różniczkowe, które jest określone przez równość aksjomaty ciała wraz z aksjomatami różniczkowania sprawiają, że różniczkowanie jest różniczką względem Na przykład na mocy przemienności mnożenia i prawa Leibniza zachodzi
W ciele różniczkowym nie ma rozwiązania równania różniczkowego
ale znajduje się ono w większym ciele różniczkowym zawierającym funkcję Ciało różniczkowe z rozwiązaniami wszystkich układów równań różniczkowych nazywane jest ciałem różniczkowo domkniętym. Takie ciała istnieją, ale nie mają własności naturalnych obiektów algebraicznych czy geometrycznych. Wszystkie ciała różniczkowe (o ograniczonej kardynalności) zawierają się w większym ciele różniczkowo domkniętym. Ciała różniczkowe są przedmiotem badań w różniczkowej teorii Galois.
Powszechnie występującymi przykładami różniczkowań są pochodna cząstkowa, pochodna Liego, pochodna Pincherlego i komutator względem elementu algebry. Wszystkie te przykłady są ściśle ze sobą powiązane wspólnym pojęciem różniczkowania.
Pierścień operatorów pseudoróżniczkowalnych
Pierścienie różniczkowe i algebry różniczkowe są często badane za pomocą pierścienia operatorów pseudoróżniczkowym na nich określonych.
Niech dany będzie pierścień
Mnożenie w tym pierścieniu określone jest wzorem
gdzie oznacza symbol Newtona. Warta wspomnienia tożsamość
wynika z innych tożsamości:
oraz
Różniczkowania z gradacją
Jeżeli dana jest algebra z gradacją a jest jednorodnym przekształceniem liniowym o gradacji w wtedy jest różniczkowaniem jednorodnym, jeżeli działa na elementach jednorodnych
Różniczkowanie z gradacją jest sumą różniczkowań jednorodnych o tym samym
Jeżeli współczynnik komutujący to definicja ta redukuje się do zwykłego przypadku.
Jeżeli jednakże to jest dla parzystych Nazywa się je wtedy antyróżniczkowaniami.
Przykładami antyróżniczkowań są pochodna zewnętrzna i produkt wewnętrzny (ang. interior product, nie mylić z iloczynem wewnętrznym, ang. inner product) działający na formach różniczkowych.
Różniczkowania z gradacją superalgebr (np. algebry z gradacją ) są często nazywane superróżniczkowaniami.
Zobacz też
Bibliografia
- Buium, Differential Algebra and Diophantine Geometry, Hermann (1994).
- I. Kaplansky, Differential Algebra, Hermann (1957).
- E. Kolchin, Differential Algebra and Algebraic Groups, 1973
- D. Marker, Model theory of differential fields, Model theory of fields, Lecture notes in Logic 5, D. Marker, M. Messmer i A. Pillay, Springer Verlag (1996).
- A. Magid, Lectures on Differential Galois Theory, American Math. Soc., 1994
Linki zewnętrzne