Read other articles:

District in Lower Saxony, Germany District in Lower Saxony, GermanyLüchow-DannenbergDistrict FlagCoat of armsCountryGermanyStateLower SaxonyCapitalLüchowGovernment • District admin.Dagmar SchulzArea • Total1,220 km2 (470 sq mi)Population (31 December 2021)[1] • Total48,472 • Density40/km2 (100/sq mi)Time zoneUTC+01:00 (CET) • Summer (DST)UTC+02:00 (CEST)Vehicle registrationDANWebsitewww.luechow-dann...

 

For related races, see 1922 United States gubernatorial elections. 1922 Arizona gubernatorial election ← 1920 November 7, 1922 1924 →   Nominee George W. P. Hunt Thomas E. Campbell Party Democratic Republican Popular vote 37,310 30,599 Percentage 54.94% 45.06% County resultsHunt:      50–60%      60–70%Campbell:      50–60% Governor before election Thomas E. Campbell Republican El...

 

Communication and graphic design This article needs additional citations for verification. Please help improve this article by adding citations to reliable sources. Unsourced material may be challenged and removed.Find sources: Information design – news · newspapers · books · scholar · JSTOR (September 2009) (Learn how and when to remove this template message) Part of a series on StatisticsData and information visualization Major dimensions Exploratory...

Statistical property A monotonic likelihood ratio in distributions   f ( x )   {\displaystyle \ f(x)\ } and   g ( x )   {\displaystyle \ g(x)\ } The ratio of the density functions above is monotone in the parameter   x   , {\displaystyle \ x\ ,} so     f ( x )   g ( x )   {\displaystyle \ {\frac {\ f(x)\ }{g(x)}}\ } satisfies the monotone likelihood ratio property. In statistics, the monotone likelihood ratio property is a property of the rati...

 

Distributed multimedia communications platform JamiDeveloper(s)Savoir-faire Linux Inc.Preview release(s) [±]Android 20210813 (August 13, 2021; 2 years ago (2021-08-13)[1]) [±] Desktop 20201230 (December 30, 2020; 3 years ago (2020-12-30)[2]) [±] iOS 20210104 (January 4, 2021; 3 years ago (2021-01-04)[3]) [±] Repositorygit.jami.net Written inJava, Kotlin, Python, Shell,...

 

Pour les articles homonymes, voir Marie-Amélie d'Autriche (1701-1756) et Marie-Amélie d'Autriche (1746-1804). Marie-Amélie d'AutricheBiographieNaissance 15 octobre 1780 ou 17 octobre 1780FlorenceDécès 25 décembre 1798VienneSépulture Crypte des CapucinsFamille Habsbourg-LorrainePère Léopold IIMère Marie-Louise d'EspagneFratrie Marie-Thérèse d'AutricheFrançois Ier d'AutricheFerdinand III de ToscaneMarie-Anne de Habsbourg-LorraineCharles-Louis d'Autriche-TeschenAlexa...

Chemical compound p-MethyldiphenhydramineIdentifiers IUPAC name N,N-Dimethyl-2-[(4-methylphenyl)(phenyl)methoxy]ethanamine CAS Number19804-27-4PubChem CID19935ChemSpider18776 YUNIIP9633413CUECHA InfoCard100.039.375 Chemical and physical dataFormulaC18H23NOMolar mass269.388 g·mol−13D model (JSmol)Interactive image SMILES O(CCN(C)C)C(c1ccccc1)c2ccc(cc2)C InChI InChI=1S/C18H23NO/c1-15-9-11-17(12-10-15)18(20-14-13-19(2)3)16-7-5-4-6-8-16/h4-12,18H,13-14H2,1-3H3 YKey:PJUYQWIDNIAHI...

 

Voce principale: Marsala Calcio. SC MarsalaStagione 1979-1980 Sport calcio Squadra Marsala Allenatore Francesco Paolo Specchia, poi Ettore Trevisan Presidente Francesco Martinico Serie C29º nel girone D Coppa Italia SemiproFase eliminatoria a gironi Maggiori presenzeCampionato: Chini (34) Miglior marcatoreCampionato: Arcoleo, Failli (3) 1978-1979 1980-1981 Si invita a seguire il modello di voce Questa voce raccoglie le informazioni riguardanti lo Sport Club Marsala nelle competizioni u...

 

Philippe VRaja SpanyolBerkuasa1 Nopember 1700 – 14 Januari 1724(23 tahun, 74 hari)PendahuluCharles IIPenerusLouis IRaja SpanyolBerkuasa6 September 1724 - 9 Juli 1746(21 tahun, 306 hari)PendahuluLouis IPenerusFerdinand VIInformasi pribadiPemakamanLa Granja de San IldefonsoWangsaWangsa BourbonAyahLouis, Dauphin dari PrancisIbuMaria Anna Victoria dari BayernPasanganMaria Luisa dari SavoyElisabeth FarneseAnakRincianLouis I dari SpanyolFerdinand VI dari SpanyolCharles III dar...

Fenobarbital struttura Fenobarbital adalah antikonvulsan turunan barbiturat yang efektif dalam mengatasi epilepsi.[1] Nama kimia dari fenobarbital sendiri adalah asam 5-etil- 5fenilbarbiturat.[1] Karena fenobarbital merupakan salah satu obat golongan barbiturat, mekanismenya sama dengan barbiturat.[1] Barbiturat menekan korteks sensor,menurunkan aktivitas motorik, mempengaruhi fungsi serebral dan menyebabkan kantuk, efek sedasi dan hipnotik.[1] Pada dosis tingg...

 

French classical liberal theorist, political economist, and member of the French assembly Bastiat redirects here. For the rugby union player, see Jean-Pierre Bastiat. Frédéric BastiatMember of the French National AssemblyIn office1848 – 24 December 1850 Personal detailsBornClaude-Frédéric Bastiat(1801-06-30)30 June 1801Bayonne, FranceDied24 December 1850(1850-12-24) (aged 49)Rome, Papal StatesAcademic careerSchool ortraditionFrench Liberal SchoolInfluencesCobden, Duno...

 

Dietrich von Denffer im 90sten Lebensjahr Dietrich Albertus Enno Alexander von Denffer (* 8. Februar 1914 in Rostock; † 22. Dezember 2007 in Gießen) war ein deutscher Botaniker. Von 1958 bis 1990 war er einer der Hauptautoren des internationalen Standardwerkes „Lehrbuch der Botanik für Hochschulen“ („Strasburger“). Er war Universitätsprofessor an der Georg-August-Universität Göttingen und Inhaber des Lehrstuhls für Botanik an der Justus-Liebig-Universität Gießen. In Gießen ...

Member of the British Shadow Cabinet Shadow Lord ChancellorIncumbentShabana Mahmoodsince 4 September 2023AppointerLeader of the OppositionInaugural holderThe Lord Elwyn-JonesFormation2 October 1983WebsiteThe Shadow Cabinet The Shadow Lord Chancellor is a member of the British Shadow Cabinet shadowing the Lord Chancellor, an office which has existed since the Norman Conquest. Since 2010, the officeholder has jointly held the title Shadow Secretary of State for Justice. The current Shadow ...

 

В Википедии есть статьи о других людях с такой фамилией, см. Носов; Носов, Сергей. Сергей Носов Дата рождения 19 февраля 1957(1957-02-19) (67 лет) Место рождения Ленинград Гражданство  СССР  Россия Образование Литературный институт имени А. М. ГорькогоСанкт-Петербургский госуд�...

 

ピタゴラスの定理 種類 定理分野 ユークリッド幾何学命題 2辺 (a, b) 上の2つの正方形の面積の和は、斜辺 (c) 上の正方形の面積に等しくなる。数式 a 2 + b 2 = c 2 {\displaystyle a^{2}+b^{2}=c^{2}} 一般化 余弦定理 空間幾何学 非ユークリッド幾何学 微分幾何学 結果 ピタゴラス数 逆ピタゴラスの定理 複素数 ユークリッド距離 ピタゴラスの三角恒等式 初等幾何学におけるピタゴラ�...

This article's factual accuracy may be compromised due to out-of-date information. Please help update this article to reflect recent events or newly available information. (October 2017) Overview of unemployment in Spain Map of unemployment by region. Q4 2021. Unemployment rates in Spain vary across different regions of the country, but they tend to be higher when compared to other Western European countries. Unemployment rates in Spain rose sharply during the late 2000s and early 2010s. Unem...

 

Questa voce o sezione sull'argomento storia è priva o carente di note e riferimenti bibliografici puntuali. Commento: Appena cinque note, una delle quali in realtà una mera annotazione. Sebbene vi siano una bibliografia e/o dei collegamenti esterni, manca la contestualizzazione delle fonti con note a piè di pagina o altri riferimenti precisi che indichino puntualmente la provenienza delle informazioni. Puoi migliorare questa voce citando le fonti più precisamente. Segui i suggerimen...

 

Part of a series on the History of Cuba Governorate of Cuba (1511–1519) Viceroyalty of New Spain (1535–1821) Siege of Havana (1762) Captaincy General of Cuba (1607–1898) Lopez Expedition (1850–1851) Ten Years' War (1868–1878) Little War (1879–1880) Cuban War of Independence (1895–1898) Treaty of Paris (1898) US Military Government (1898–1902) Platt Amendment (1901) Republic of Cuba (1902–1959) Cuban Pacification (1906–1909) Negro Rebellion (1912) Sugar Intervention (1917�...

En tibetansk buddhistisk målning som ska symbolisera samsara Samsara kommer från sanskrit och betyder att flyta ihop, att passera genom olika stadier eller att vandra. I religioner med indiskt ursprung kan samsara enklast översättas som kretslopp [av död och återfödelse].[1] Advaita vedanta I advaita vedanta betraktas samsara som fundamentalt just en illusion (maya). Samsara i hinduismen Inom hinduismen är det själen som vandrar, dvs återföds (själavandring). Vissa former av hindu...

 

Cette page concerne l'année 1658 du calendrier grégorien. Chronologies Les troupes suédoises traversent l'Øresund sur la mer gelée, toile de Johan Philip Lemke.Données clés 1655 1656 1657  1658  1659 1660 1661Décennies :1620 1630 1640  1650  1660 1670 1680Siècles :XVe XVIe  XVIIe  XVIIIe XIXeMillénaires :-Ier Ier  IIe  IIIe Chronologies thématiques Art Architecture, Arts plastiques (Dessin, Gravure, Peinture et Sculpture), (),...