Tritocosmia roei

Tritocosmia roei
Taxonomische indeling
Rijk:Animalia (Dieren)
Stam:Arthropoda (Geleedpotigen)
Klasse:Insecta (Insecten)
Orde:Coleoptera (Kevers)
Familie:Cerambycidae (Boktorren)
Geslacht:Tritocosmia
Soort
Tritocosmia roei
Hope, 1834
Portaal  Portaalicoon   Biologie
Insecten

Tritocosmia roei is een keversoort uit de familie boktorren (Cerambycidae). De wetenschappelijke naam van de soort is voor het eerst geldig gepubliceerd in 1834 door Hope.[1]

Read other articles:

SconeJenisQuick breadBahan utamaWheat, barley, atau oatmealSunting kotak info • L • BBantuan penggunaan templat ini Buku resep: Scone  Media: Scone Scone adalah roti dengan penyajian tunggal atau roti cepat. Biasanya terbuat dari gandum, jelai atau haver, dan Bakpuder sebagai pengembang kue, dan dipanggang pada loyang kue. Mereka biasanya sedikit manis dan kadang-kadang dilapisi kuning telur sebelum dipanggang.[1] Scone adalah komponen dasar dari sajian teh krim...

 

Romanian actor (1924–1970) Ludovic AntalAntal in 1968Born(1924-02-18)18 February 1924Butea, Iași County, Kingdom of RomaniaDiedOctober 1970(1970-10-00) (aged 46)Bucharest, Socialist Republic of RomaniaOccupations Actor cultural promoter television presenter priest Years active1945–1970Spouse Reli Roman ​(divorced)​AwardsMeritul Cultural Ludovic Antal (18 February 1924 – October 1970) was a Romanian actor, primarily noted for his voice acting and his ac...

 

Культурные регионы Рюкю Современное исполнение придворной музыки Музыка Рюкю — совокупность музыкальных традиций, характерных для островной группы Рюкю, включающей острова префектуры Окинава и архипелаг Амами, административно относящийся к Кагосиме. До 1868 года вс�...

Alfred Mosher Butts (13 April 1899 – 4 April 1993) adalah seorang arsitek Amerika Serikat dan pencipta permainan Scrabble pada tahun 1938. Pada tahun 1931, Alfred Butts, penduduk Poughkeepsie, New York memutuskan untuk merancang permainan yang menggabungkan anagram dan teka-teki silang ketika sedang menganggur dari pekerjaannya sebagai seorang arsitek. Pada tahun 1933, Butts menyelesaikan permainan baru yang disebutnya sebagai Lexiko. Pemain mengambil 9 keping huruf dari kumpu...

 

American racing driver Mason FilippiFilippi at Sonoma Raceway in 2023Nationality AmericanBorn (1998-04-23) April 23, 1998 (age 26)Pleasanton, CaliforniaMichelin Pilot Challenge careerDebut season2019Current teamBryan Herta AutosportRacing licence FIA SilverCo-driverTyler MaxsonFormer teamsBryan Herta Autosport(with Curb-Agajanian)Starts20Wins3Podiums6Fastest laps1Best finish2nd in 2019Finished last season3rd (2020)Previous series20162016–20182019Global MX-5 CupPirelli World ChallengeTC...

 

谢赫·穆吉布·拉赫曼Sheikh Mujibur Rahmanশেখ মুজিবুর রহমান第1任孟加拉總統任期1971年4月11日—1972年1月12日总理塔杰丁·艾哈迈德前任首任继任Nazrul Islam (Acting)任期1975年1月25日—1975年8月15日总理Muhammad Mansur Ali前任Mohammad Mohammadullah继任孔达卡尔·穆什塔克·艾哈迈德第2任孟加拉總理任期1972年1月12日—1972年1月24日总统阿布·赛义德·乔杜里Mohammad Mohammadullah前任Tajud...

Nepali actor Bhuwan K.C.भुवन केसीBhuwan KC in 2022Born (1956-09-17) 17 September 1956 (age 67)Kathmandu, NepalOccupation(s)Actor, film director, film producer, politicianYears active1966–presentNotable workKusume Rumal, Samjhana, Karodpati, Dakshina, ChinoHeight5 ft 7 in (170 cm)Political partyNepali Congress[1]Spouse(s)Vijaya Malla KC (separated)Sushmita Bomjan (separated)PartnerJiya K.C. (2017–present)ChildrenAnmol K.C. Vivek K.C. Sugam P...

 

American military engineer (1808–1891) Albert Miller LeaLea in uniform, c. 1862Born(1808-07-23)July 23, 1808Richland, Tennessee, U.S.DiedJanuary 16, 1891(1891-01-16) (aged 82)Corsicana, Texas, U.S.OccupationMilitary engineer Albert Miller Lea (July 23, 1808 – January 16, 1891) was an American military engineer who surveyed southern Minnesota and northern Iowa in 1835.[1] Biography Lea was born in Richland, Tennessee,[2] a small village not far from Knoxville...

 

Irving TownsendBornIrving Joseph Townsend(1920-11-27)November 27, 1920Springfield, Massachusetts, U.S.DiedDecember 17, 1981(1981-12-17) (aged 61)Santa Ynez, California, U.S.OccupationProducer and authorEducationPrinceton University[1][2] Irving Townsend (November 27, 1920 – December 17, 1981)[3] was an American record producer and author. He is most famous for having produced the Miles Davis album Kind of Blue, which is the best-selling jazz album of all ti...

This article relies largely or entirely on a single source. Relevant discussion may be found on the talk page. Please help improve this article by introducing citations to additional sources.Find sources: Honeywell Analytics – news · newspapers · books · scholar · JSTOR (May 2015) Honeywell Analytics is a producer of gas detector based in Poole in the United Kingdom. History Zellweger Analytics established its SF Detection brand in 1991 to supply dome...

 

Contea di Carpi Contea di Carpi - Localizzazione Dati amministrativiLingue parlateLombardo, volgare, latino, italiano CapitaleCarpi Dipendente daSacro Romano Impero PoliticaForma di governoMonarchia(signoria sovrana) Nascita1336 con Manfredo I Pio CausaFine del dominio dei Bonacolsi su Modena e investitura di Manfredo I da parte dell'imperatore Ludovico IV il Bavaro Fine1527 con Alberto III Pio CausaDeposizione di Alberto III per fellonia (con nuova investitura di Alfonso I d'Este dal 1530) T...

 

American legislative district Florida's 10th StateHouse of RepresentativesdistrictRepresentative  Chuck BrannanR–Macclenny Demographics78.6% White16.7% Black5.8% Hispanic0.7% Asian0.5% Native American0.1% Hawaiian/Pacific Islander1.7% OtherPopulation (2010) • Voting age156,423120,635Florida's 10th House district elects one member of the Florida House of Representatives. The district is represented by Chuck Brannan. This district i...

Agreement to formally end hostilities between two or more warring parties For the X-Sinner album, see Peace Treaty (album). The Treaty of Versailles, signed at the conclusion of World War I A peace treaty is an agreement between two or more hostile parties, usually countries or governments, which formally ends a state of war between the parties.[1] It is different from an armistice, which is an agreement to stop hostilities; a surrender, in which an army agrees to give up arms; or a c...

 

Henri van Cuykvescovo della Chiesa cattolica Da gloriam Deo  Incarichi ricopertiVescovo di Roermond (1595-1609)  Nato1546 ad Culemborg Consacrato vescovo8 luglio 1596 dall'arcivescovo Mathias Hovius Deceduto9 ottobre 1609 a Roermond   Manuale Henri van Cuyk conosciuto anche come Hendrik van Cuyk o con il nome latinizzato Henricus Cuyckius (Culemborg, 1546 – Roermond, 9 ottobre 1609) è stato un vescovo cattolico e umanista olandese. Indice 1 Biografia 2 Opere 3 Opere (selezio...

 

Yoo Jeong-yeonJeongyeon pada tahun 2022Nama asal유정연 Yoo Jeong-yeonLahir1 November 1996 (umur 27)Suwon,  Korea SelatanTempat tinggal SeoulNama lainJeongyeonWarga negara Korea SelatanPekerjaanPenyanyiKota asalSeoulKarier musikGenreK-popInstrumenVokalTahun aktif2015–sekarangLabelJYP EntertainmentArtis terkaitTWICETanda tangan Nama KoreaHangul유정연 Alih AksaraYoo JeongyeonMcCune–ReischauerYu Jongyon Yoo Jeong-yeon (Hangul: 유정연; lahir 1 N...

Schema einer Mehrphasenströmung.In Wasser (blau), sind Öl (schwarz) und Gas (weiß) dispers verteilt. Mehrphasenströmung bezeichnet in der Strömungsmechanik die Strömung eines Gemischs aus mehreren Phasen. Bei der Einphasenströmung (klassische Strömungsmechanik) wird nur ein Fluid (z. B. Wasser) betrachtet, bei Mehrphasenströmungen betrachtet man Ströme aus verschiedenen Stoffen, z. B. Wasser und Öl, bzw. allgemein mehrere verschiedene Fluide oder Kombinationen aus Gasen, ...

 

Order of magnitude indicator For use of measurement as a form of social power, see metric power. A metric prefix is a unit prefix that precedes a basic unit of measure to indicate a multiple or submultiple of the unit. All metric prefixes used today are decadic. Each prefix has a unique symbol that is prepended to any unit symbol. The prefix kilo-, for example, may be added to gram to indicate multiplication by one thousand: one kilogram is equal to one thousand grams. The prefix milli-, like...

 

Questa voce o sezione sugli argomenti fiumi e Sudafrica non cita le fonti necessarie o quelle presenti sono insufficienti. Puoi migliorare questa voce aggiungendo citazioni da fonti attendibili secondo le linee guida sull'uso delle fonti. Segui i suggerimenti del progetto di riferimento. Orangeil fiume OrangeStati Lesotho Sudafrica Namibia SuddivisioniMokhotlong (Lesotho)Thaba-Tseka (Lesotho)Qacha's Nek (Lesotho)Quthing (Lesotho)Mohale's Hoek (Lesotho)Capo Orientale (Suda...

とんかつDJアゲ太郎 ジャンル ギャグ、音楽(DJ)料理(とんかつ) 漫画 原作・原案など イーピャオ(原案) 作画 小山ゆうじろう 出版社 集英社 掲載誌 少年ジャンプ+MEN'S NON-NO(B面) レーベル ジャンプ・コミックス 発表号 J+:2014年9月22日 - 2017年3月23日メンノン:2015年1月号 - 12月号 巻数 全11巻 話数 全121話 アニメ 原作 イーピャオ、小山ゆうじろう 監督 大地丙太郎...

 

Real root of the polynomial x^5+x+a Plot of the Bring radical for real argument In algebra, the Bring radical or ultraradical of a real number a is the unique real root of the polynomial x 5 + x + a . {\displaystyle x^{5}+x+a.} The Bring radical of a complex number a is either any of the five roots of the above polynomial (it is thus multi-valued), or a specific root, which is usually chosen such that the Bring radical is real-valued for real a and is an analytic function in a neighborho...