Prinsbisdom Osnabrück
|
Read other articles:
Siaga Tata adalah tingkatan ketiga atau terakhir dalam Syarat-syarat Kecakapan Umum satuan Pramuka Siaga. setelah Siaga Mula dan Siaga Bantu. Pramuka Siaga yang telah menyelesaikan SKU Siaga Tata dapat mengikuti Pramuka Garuda untuk golongan Pramuka Siaga. Syarat-syarat yang harus dipenuhi Untuk mencapai tingkat Siaga Tata, seorang Pramuka Siaga Bantu harus memenuhi syarat-syarat sebagai berikut: Rajin dan giat mengikuti latihan Perindukan sebagai Siaga Bantu, sekurang-kurangnya 10 kali lati...
Cette page présente les armoiries (figures et blasonnements) des différentes branches et des membres issus de la Maison Grimaldi et de la famille princière de Monaco. Armorial Figure Nom de la branche familiale ou du personnage, et blasonnement Branche des princes de Monaco. Fuselé d'argent et de gueules. Tenants : Deux moines de l’Ordre des frères mineurs, chevelus, barbus et chaussés, portant chacun une épée levée, debout sur une banderole.Les moines soutenant le bouclier é...
Marvel Comics superhero Not to be confused with Penny Parker or Spider-Girl § Penelope Parker.Comics character Peni ParkerPeni Parker and SP//dr, from the cover of Edge of Spider-Geddon #2 (October 2018), by Jake WyattPublication informationPublisherMarvel ComicsFirst appearanceEdge of Spider-Verse #5 (October 2014)Created byGerard Way (writer)Jake Wyatt (artist)In-story informationAlter egoPeni ParkerSpecies Peni: Human mutate SP//dr: Spider / Robot Place of originEarth-14512Team affil...
Fictional supervillain in Marvel Comics Not to be confused with Nathaniel Richards (Marvel Comics). For the 2021 self-titled comic series, see Kang the Conqueror (comic book). Comics character Kang the ConquerorTextless cover of The Uncanny Avengers #12 (September 2013).Art by John Cassaday.Publication informationPublisherMarvel ComicsFirst appearanceThe Avengers #8 (September 1964)[1]Created byStan LeeJack KirbyIn-story informationAlter egoNathaniel RichardsSpeciesHumanPlace of origi...
Comic book series Millie the ModelMillie the Model #40 (Spring 1953).Cover art by Dan DeCarlo.Publication informationPublisherMarvel ComicsFormatOngoing seriesPublication dateAugust 1945 – December 1973No. of issues207Main character(s)Millie CollinsChili StormToni TurnerCreative teamCreated byRuth AtkinsonWritten byRuth AtkinsonKen BaldStan LeeArtist(s)Ruth AtkinsonMike SekowskyDan DeCarloStan Goldberg Millie the Model was Marvel Comics' longest-running humor title, first published by the c...
МифологияРитуально-мифологическийкомплекс Система ценностей Сакральное Миф Мономиф Теория основного мифа Ритуал Обряд Праздник Жречество Мифологическое сознание Магическое мышление Низшая мифология Модель мира Цикличность Сотворение мира Мировое яйцо Мифическое �...
此條目需要补充更多来源。 (2021年7月4日)请协助補充多方面可靠来源以改善这篇条目,无法查证的内容可能會因為异议提出而被移除。致使用者:请搜索一下条目的标题(来源搜索:美国众议院 — 网页、新闻、书籍、学术、图像),以检查网络上是否存在该主题的更多可靠来源(判定指引)。 美國眾議院 United States House of Representatives第118届美国国会众议院徽章 众议院旗...
This article needs additional citations for verification. Please help improve this article by adding citations to reliable sources. Unsourced material may be challenged and removed.Find sources: Judiciary of Chile – news · newspapers · books · scholar · JSTOR (December 2013) (Learn how and when to remove this message) Politics of Chile Executive President (list) Gabriel Boric Ministries National Congress Senate Chamber of Deputies Judiciary Supreme Cou...
لمعانٍ أخرى، طالع ترمس (توضيح). 27°21′34″N 43°36′14″E / 27.359532°N 43.603930°E / 27.359532; 43.603930 محير الترمس العلم الشعار تقسيم إداري البلد السعودية المنطقة الإدارية منطقة القصيم المسؤولون رئيس المركز نايف بن فالح بن نايف الغازي.[1] خصائص جغرافية إحداثيات 27°21′34″N 43...
Mosque in Baku, Azerbaijan Gileyli mosqueAzerbaijani: Gileyli məscidiReligionAffiliationIslamStatusrestoredLocationLocation Old City, BakuCountryAzerbaijanLocation within AzerbaijanGeographic coordinates40°21′59″N 49°50′09″E / 40.366275°N 49.835820°E / 40.366275; 49.835820ArchitectureStyleIslamic architecture, Shirvan-Absheron architectural schoolCompleted1309 The Gileyli mosque (Azerbaijani: Gileyli məscidi) or Jomard Garay mosque[1] (Azerbaijani...
Number denoting a graph's closeness to a tree In graph theory, the treewidth of an undirected graph is an integer number which specifies, informally, how far the graph is from being a tree. The smallest treewidth is 1; the graphs with treewidth 1 are exactly the trees and the forests. The graphs with treewidth at most 2 are the series–parallel graphs. The maximal graphs with treewidth exactly k are called k-trees, and the graphs with treewidth at most k are called partial k-trees. Many othe...
Converting information into digital form Digitizer redirects here. For other uses, see Digitizer (disambiguation). For transforming business and education, see Digital transformation. For the shift from mechanical and analog electronic technology to digital electronics technology, see Digital Revolution. Internet Archive book scanner Digitization[1] is the process of converting information into a digital (i.e. computer-readable) format.[2] The result is the representation of a...
Questa pagina sull'argomento cronologia sembra trattare argomenti unificabili alla pagina Calendario luni-solare hindu. Commento: Sembra che parlino della stessa cosa Puoi contribuire unendo i contenuti in una pagina unica. Segui i suggerimenti del progetto di riferimento. Una pagina del calendario induista 1871-72 Il calendario induista era il calendario usato in India in epoca vedica, che dopo molti cambiamenti e modifiche a seconda delle diverse regioni si è suddiviso nei moderni ca...
Pace di LodiL'Italia all'indomani della firma della pace di Lodi (1454)ContestoConflitto tra Ducato di Milano e Repubblica di Venezia con i rispettivi alleati[1] Firma9 aprile[1][2] 1454 LuogoPalazzo Broletto, Lodi[2], Ducato di Milano CondizioniRestituzione di Bergamasco e Bresciano alla Repubblica di Venezia[1]; raggiungimento della stabilità politica in Italia[3] e successione di Francesco Sforza al Ducato di Milano[1] NegoziatoriAng...
Defunct American motor vehicle manufacturer The Bour-Davis was an American automobile manufactured from 1916 until 1922. The car took its name from two of the founders of the company; Robert C Davis and Charles J Bour.[1] Production of the car was started in Detroit, before moving to Frankfort, Indiana in 1917.[1] In 1918, the automobile's manufacturing rights were acquired by the Louisiana Motor Car Company and production was moved to Cedar Grove, Louisiana.[2] A dist...
Musical instrument Not to be confused with electric piano or electronic piano. This article needs additional citations for verification. Please help improve this article by adding citations to reliable sources. Unsourced material may be challenged and removed.Find sources: Digital piano – news · newspapers · books · scholar · JSTOR (February 2015) (Learn how and when to remove this message) A digital piano in an upright piano form factor A digital pian...
Scottish artist and musician (born 1953) For other persons by the name William Drummond, see William Drummond (disambiguation). Bill DrummondDrummond in 2010BornWilliam Ernest Drummond (1953-04-29) 29 April 1953 (age 71)Butterworth, South AfricaOther namesKing Boy DTime BoyTenzing Scott BrownEducationUniversity of NorthamptonArt and Design AcademyOccupationsArtistwritermusicianmusic industry managerYears active1975–presentMusical careerOriginNewton Stewart, ScotlandLabelsZooK...
Untuk kegunaan lain, lihat Makron (disambiguasi). Artikel ini bukan mengenai Makron atau huruf Latin Ā. Huruf KirilA dengan makron Alfabet KirilHuruf SlaviaАА́А̀А̂А̄ӒБВГҐДЂЃЕЕ́ÈЕ̂ЁЄЖЗЗ́ЅИИ́ЍИ̂ЙІЇЈКЛЉМНЊОŌПРСС́ТЋЌУУ́ У̀У̂ӮЎФХЦЧЏШЩЪЫЬЭЮЯHuruf non-SlaviaӐА̊А̃Ӓ̄ӔӘӘ́Ә̃ӚВ̌ҒГ̑Г̣Г̌ҔӺҒ̌ӶД̌Д̣Д̆ӖЕ̄Е̃Ё̄Є̈ӁҖӜҘӞЗ̌З̱З̣ԐԐ̈ӠӢИ̃ҊӤҚӃҠҞҜК̣ԚӅԮԒӍӉҢԨӇҤО́О�...
Si ce bandeau n'est plus pertinent, retirez-le. Cliquez ici pour en savoir plus. Certaines informations figurant dans cet article ou cette section devraient être mieux reliées aux sources mentionnées dans les sections « Bibliographie », « Sources » ou « Liens externes » (janvier 2017). Vous pouvez améliorer la vérifiabilité en associant ces informations à des références à l'aide d'appels de notes. Bataille de Khan Mayssaloun Henri Gouraud inspecte...
karta över Krak des Chevaliers Krak des Chevaliers Borgen som den såg ut på medeltiden Krak des Chevaliers eller Crac des Chevaliers (arabiska Qal'at Al-Hosn) var en korsfararborg i västra Syrien cirka 65 km väster om orten Al Hosn (Homs) i muhafazah (provins) Homs.[1] Platsen upptogs tillsammans med Salah Ed-Din borgen (Qal’at Salah Al-Din) på Unescos världsarvslista 2006. Historia Borgen uppfördes ca år 1031 och fungerade som en strategisk utpost för korsriddarnas räder och an...