Peristiwa kepupusan

Peristiwa kepupusan (juga dikenali sebagai kepupusan besar-besaran atau krisis biotik) adalah penurunan meluas dalam kepelbagaian biologi di Bumi. Kejadian sedemikian dikenal pasti dengan perubahan mengejut dalam kepelbagaian dan banyaknya organisma multiselular. Ia berlaku apabila kadar kepupusan meningkat berbanding kadar spesiasi. Oleh sebab kebanyakan kepelbagaian dan biomassa di Bumi merupakan mikroba, dan dengan itu sukar untuk diukur, peristiwa kepupusan yang direkodkan mempengaruhi komponen biosfera yang mudah diperhatikan, secara biologi kompleks dan bukannya jumlah kepelbagaian dan kelimpahan hidup.[1]

Kepupusan berlaku pada kadar yang tidak sekata. Berdasarkan rekod fosil, kadar latar belakang kepupusan di Bumi adalah kira-kira dua hingga lima taksonomi keluarga haiwan laut setiap sejuta tahun. Fosil marin kebanyakannya digunakan untuk mengukur kadar kepupusan kerana rekod fosil dan stratigrafi yang lebih baik berbanding haiwan darat.

Peristiwa Oksigenasi Besar mungkin merupakan peristiwa kepupusan utama yang pertama. Sejak ledakan Cambria lima kepupusan besar-besaran utama telah melebihi kadar kepupusan latar belakang. Paling diketahui dan paling terkenal, peristiwa kepupusan usia Kapur Cretaceous-Paleogen, yang berlaku kira-kira 66 juta tahun yang lalu (Ma), adalah kepupusan besar-besaran haiwan dan tumbuhan dalam masa geologi yang singkat.[2] Sebagai tambahan kepada lima kepupusan besar-besaran besar, terdapat banyak juga kepupusan kecil dan besar-besaran berterusan yang disebabkan oleh aktiviti manusia, yang kadang-kala digelar kepupusan keenam.[3] Kepupusan massa seolah-olah terutamanya merupakan fenomena Fanerozoik, dengan kadar kepupusan rendah sebelum organisma kompleks besar muncul.[4]

Anggaran bilangan kepupusan besar-besaran besar dalam tempoh 540 juta tahun lepas adalah antara lima hingga lebih daripada dua puluh. Perbezaan ini terletak dari ambang yang dipilih untuk menggambarkan peristiwa kepupusan sebagai "utama", dan data yang dipilih untuk mengukur kepelbagaian masa lalu.

Peristiwa kepupusan utama

Badlands berhampiran Drumheller , Alberta , di mana hakisan telah mendedahkan sempadan K-Pg.
Trilobite adalah haiwan marin yang sangat berjaya sehingga peristiwa kepupusan Permian-Trias menghapus mereka semua

Dalam satu kertas kerja penting yang diterbitkan pada tahun 1982, Jack Sepkoski dan David M. Raup telah mengenal pasti lima kepupusan besar-besaran. Mereka pada asalnya dikenal pasti sebagai penyebab terpisah ("outliers") kepada trend umum penurunan kadar kepupusan semasa Fanerozoik,[5] tetapi ketika ujian statistik yang lebih ketat telah digunakan pada data yang terkumpul, ia didapati bahawa kehidupan haiwan multiselular telah mengalami lima kepupusan besar-besaran utama dan banyak yang lebih kecil.[6] "Lima Kepupusan Besar" tidak boleh ditakrifkan dengan jelas, tetapi sebaliknya kelihatan mewakili yang terbesar (atau yang paling besar) dari suatu peristiwa yang secara berterusan dalam kontinum rata peristiwa kepupusan.[5]

  1. Peristiwa kepupusan Silures-Ordovic (Akhir Ordovic atau O–S): 450–440 Ma (juta tahun yang lalu) di peralihan Silures-Ordovic. Dua peristiwa berlaku yang membunuh 27% daripada semua keluarga, 57% daripada semua genera dan 60% hingga 70% daripada semua spesies. Secara keseluruhan ia disenaraikan oleh ramai ahli sains sebagai yang kedua terbesar dari lima kepupusan utama dalam sejarah Bumi dari segi peratusan genera yang menjadi pupus.
  2. Kepupusan Ordovic Akhir: 375–360 Ma berhampiran perubahan Karbon-Devonian. Pada akhir zaman Frasnian di bahagian akhir Tempoh Devon, satu siri kepupusan yang berpanjangan menghapuskan kira-kira 19% daripada semua keluarga, 50% daripada semua genera[7] dan sekurang-kurangnya 70% daripada semua spesies.[8] Peristiwa kepupusan ini berlangsung mungkin selama 20 juta tahun, dan terdapat bukti untuk beberapa siri denyutan kepupusan dalam tempoh ini.
  3. Peristiwa kepupusan Trias-Permian (Permian Akhir): 252 Ma at the PermianTriassic transition.[9] Earth's largest extinction killed 57% of all families, 83% of all genera and 90% to 96% of all species[10] (53% of marine families, 84% of marine genera, about 96% of all marine species and an estimated 70% of land species,[2] including insects).[11] The highly successful marine arthropod, the trilobite, became extinct. The evidence regarding plants is less clear, but new taxa became dominant after the extinction.[12] The "Great Dying" had enormous evolutionary significance: on land, it ended the primacy of mammal-like reptiles. The recovery of vertebrates took 30 million years,[13] but the vacant niches created the opportunity for archosaurs to become ascendant. In the seas, the percentage of animals that were sessile dropped from 67% to 50%. The whole late Permian was a difficult time for at least marine life, even before the "Great Dying".
  4. Triassic–Jurassic extinction event (End Triassic): 201.3 Ma at the TriassicJurassic transition. About 23% of all families, 48% of all genera (20% of marine families and 55% of marine genera) and 70% to 75% of all species became extinct.[10] Most non-dinosaurian archosaurs, most therapsids, and most of the large amphibians were eliminated, leaving dinosaurs with little terrestrial competition. Non-dinosaurian archosaurs continued to dominate aquatic environments, while non-archosaurian diapsids continued to dominate marine environments. The Temnospondyl lineage of large amphibians also survived until the Cretaceous in Australia (e.g., Koolasuchus).
  5. Cretaceous–Paleogene extinction event (End Cretaceous, K–Pg extinction, or formerly K–T extinction): 66 Ma at the Cretaceous (Maastrichtian) – Paleogene (Danian) transition interval.[14] The event formerly called the Cretaceous-Tertiary or K–T extinction or K–T boundary is now officially named the Cretaceous–Paleogene (or K–Pg) extinction event. About 17% of all families, 50% of all genera[10] and 75% of all species became extinct.[15] In the seas all the ammonites, plesiosaurs and mosasaurs disappeared and the percentage of sessile animals (those unable to move about) was reduced to about 33%. All non-avian dinosaurs became extinct during that time.[16] The boundary event was severe with a significant amount of variability in the rate of extinction between and among different clades. Mammals and birds, the latter descended from theropod dinosaurs, emerged as dominant large land animals.

Disebalik popular bagi lima peristiwa ini, tidak ada garis pasti yang memisahkan mereka daripada peristiwa-peristiwa kepupusan lain; menggunakan kaedah yang berbeza untuk mengira kesan kepupusan boleh membawa kepada peristiwa lain yang menonjol di lima teratas.[17]

Rekod-rekod fosil yang lebih tua adalah lebih sukar untuk mentafsir. Ini adalah kerana:

  • Fosil lama lebih sukar dicari kerana ia biasanya tertanam pada kedalaman yang besar.
  • Memberi tarikh fosil yang lebih tua lebih sukar.
  • Lapisan fosil yang produktif diteliti lebih daripada yang tidak produktif, dengan itu meninggalkan tempoh tertentu yang kurang dikaji.
  • Peristiwa alam sekitar prasejarah boleh mengganggu proses pemendapan.
  • Pemeliharaan fosil berbeza-beza di tanah, tetapi fosil marin cenderung lebih baik terpelihara daripada ia yang dicari oleh rakan-rakan di daratan.[18]

It has been suggested that the apparent variations in marine biodiversity may actually be an artifact, with abundance estimates directly related to quantity of rock available for sampling from different time periods.[19] However, statistical analysis shows that this can only account for 50% of the observed pattern,[perlu rujukan] and other evidence (such as fungal spikes)[Penjelasan diperlukan] provides reassurance that most widely accepted extinction events are real. A quantification of the rock exposure of Western Europe indicates that many of the minor events for which a biological explanation has been sought are most readily explained by sampling bias.[20]

Research completed after the seminal 1982 paper has concluded that a sixth mass extinction event is ongoing:

6. Holocene extinction: Currently ongoing. Extinctions have occurred at over 1000 times the background extinction rate since 1900.[21][22] The mass extinction is considered a result of human activity.[23][24][25]

More recent research has indicated that the End-Capitanian extinction event likely constitutes a separate extinction event from the Permian–Triassic extinction event; if so, it would be larger than many of the "Big Five" extinction events.

List of extinction events

This is a list of extinction events:[26]

Period or supereon Extinction Date Possible causes
Quaternary Holocene extinction c. 10,000 BCE — Ongoing Humans[27]
Quaternary extinction event 640,000, 74,000, and 13,000 years ago Unknown; may include climate changes, massive volcanic eruptions and human overhunting[28][29]
Neogene Pliocene–Pleistocene boundary extinction 2 Ma Supernova?[30][31] Eltanin impact?[32][33]
Middle Miocene disruption 14.5 Ma climate change due to change of ocean circulation patterns and perhaps related to the Milankovitch cycles?.[34]
Paleogene Eocene–Oligocene extinction event 33.9 Ma Popigai impactor?[35]
Cretaceous Cretaceous–Paleogene extinction event 66 Ma Chicxulub impactor;[36] Deccan Traps?[37]
Cenomanian-Turonian boundary event 94 Ma Caribbean large igneous province[38]
Aptian extinction 117 Ma
Jurassic End-Jurassic (Tithonian) extinction 145 Ma
Toarcian turnover 183 Ma Karoo-Ferrar Provinces[39]
Triassic Triassic–Jurassic extinction event 201 Ma Central Atlantic magmatic province;[40] impactor
Carnian Pluvial Event 230 Ma Wrangellia flood basalts[41]
Permian Permian–Triassic extinction event 252 Ma Siberian Traps;[42] Wilkes Land Crater;[43]Anoxic event
End-Capitanian extinction event 260 Ma Emeishan Traps?[44]
Olson's Extinction 270 Ma
Carboniferous Carboniferous rainforest collapse 305 Ma
Devonian Late Devonian extinction 375–360 Ma Viluy Traps[45]
Silurian Lau event 420 Ma Changes in sea level and chemistry?[46]
Mulde event 424 Ma Global drop in sea level?[47]
Ireviken event 428 Ma Deep-ocean anoxia; Milankovitch cycles?[48]
Ordovician Ordovician–Silurian extinction events 450–440 Ma Global cooling and sea level drop; Gamma-ray burst?[49]
Cambrian Cambrian–Ordovician extinction event 488 Ma
Dresbachian extinction event 502 Ma
End-Botomian extinction event 517 Ma
Precambrian End-Ediacaran extinction 542 Ma
Great Oxygenation Event 2400 Ma Rising oxygen levels in the atmosphere due to the development of photosynthesis

Evolutionary importance

Templat:Life timeline Mass extinctions have sometimes accelerated the evolution of life on Earth. When dominance of particular ecological niches passes from one group of organisms to another, it is rarely because the new dominant group is "superior" to the old and usually because an extinction event eliminates the old dominant group and makes way for the new one.[50][51]

For example, mammaliformes ("almost mammals") and then mammals existed throughout the reign of the dinosaurs, but could not compete for the large terrestrial vertebrate niches which dinosaurs monopolized. The end-Cretaceous mass extinction removed the non-avian dinosaurs and made it possible for mammals to expand into the large terrestrial vertebrate niches. Ironically, the dinosaurs themselves had been beneficiaries of a previous mass extinction, the end-Triassic, which eliminated most of their chief rivals, the crurotarsans.

Another point of view put forward in the Escalation hypothesis predicts that species in ecological niches with more organism-to-organism conflict will be less likely to survive extinctions. This is because the very traits that keep a species numerous and viable under fairly static conditions become a burden once population levels fall among competing organisms during the dynamics of an extinction event.

Furthermore, many groups which survive mass extinctions do not recover in numbers or diversity, and many of these go into long-term decline, and these are often referred to as "Dead Clades Walking".[52]

Darwin was firmly of the opinion that biotic interactions, such as competition for food and space—the ‘struggle for existence’—were of considerably greater importance in promoting evolution and extinction than changes in the physical environment. He expressed this in The Origin of Species: "Species are produced and exterminated by slowly acting causes…and the most import of all causes of organic change is one which is almost independent of altered…physical conditions, namely the mutual relation of organism to organism-the improvement of one organism entailing the improvement or extermination of others".[53]

Patterns in frequency

It has been suggested variously that extinction events occurred periodically, every 26 to 30 million years,[54][55] or that diversity fluctuates episodically every ~62 million years.[56] Various ideas attempt to explain the supposed pattern, including the presence of a hypothetical companion star to the sun,[57][58] oscillations in the galactic plane, or passage through the Milky Way's spiral arms.[59] However, other authors have concluded the data on marine mass extinctions do not fit with the idea that mass extinctions are periodic, or that ecosystems gradually build up to a point at which a mass extinction is inevitable.[5] Many of the proposed correlations have been argued to be spurious.[60][61] Others have argued that there is strong evidence supporting periodicity in a variety of records,[62] and additional evidence in the form of coincident periodic variation in nonbiological geochemical variables.[63] Templat:Phanerozoic biodiversity Mass extinctions are thought to result when a long-term stress is compounded by a short term shock.[64] Over the course of the Phanerozoic, individual taxa appear to be less likely to become extinct at any time,[65] which may reflect more robust food webs as well as less extinction-prone species and other factors such as continental distribution.[65] However, even after accounting for sampling bias, there does appear to be a gradual decrease in extinction and origination rates during the Phanerozoic.[5] This may represent the fact that groups with higher turnover rates are more likely to become extinct by chance; or it may be an artefact of taxonomy: families tend to become more speciose, therefore less prone to extinction, over time;[5] and larger taxonomic groups (by definition) appear earlier in geological time.[66]

It has also been suggested that the oceans have gradually become more hospitable to life over the last 500 million years, and thus less vulnerable to mass extinctions,[note 1][67][68] but susceptibility to extinction at a taxonomic level does not appear to make mass extinctions more or less probable.[65]

Causes

There is still debate about the causes of all mass extinctions. In general, large extinctions may result when a biosphere under long-term stress undergoes a short-term shock.[64] An underlying mechanism appears to be present in the correlation of extinction and origination rates to diversity. High diversity leads to a persistent increase in extinction rate; low diversity to a persistent increase in origination rate. These presumably ecologically controlled relationships likely amplify smaller perturbations (asteroid impacts, etc.) to produce the global effects observed.[5]

Identifying causes of particular mass extinctions

A good theory for a particular mass extinction should: (i) explain all of the losses, not just focus on a few groups (such as dinosaurs); (ii) explain why particular groups of organisms died out and why others survived; (iii) provide mechanisms which are strong enough to cause a mass extinction but not a total extinction; (iv) be based on events or processes that can be shown to have happened, not just inferred from the extinction.

It may be necessary to consider combinations of causes. For example, the marine aspect of the end-Cretaceous extinction appears to have been caused by several processes which partially overlapped in time and may have had different levels of significance in different parts of the world.[69]

Arens and West (2006) proposed a "press / pulse" model in which mass extinctions generally require two types of cause: long-term pressure on the eco-system ("press") and a sudden catastrophe ("pulse") towards the end of the period of pressure.[70] Their statistical analysis of marine extinction rates throughout the Phanerozoic suggested that neither long-term pressure alone nor a catastrophe alone was sufficient to cause a significant increase in the extinction rate.

Most widely supported explanations

Macleod (2001)[71] summarized the relationship between mass extinctions and events which are most often cited as causes of mass extinctions, using data from Courtillot et al. (1996),[72] Hallam (1992)[73] and Grieve et al. (1996):[74]

  • Flood basalt events: 11 occurrences, all associated with significant extinctions[75][76] But Wignall (2001) concluded that only five of the major extinctions coincided with flood basalt eruptions and that the main phase of extinctions started before the eruptions.[77]
  • Sea-level falls: 12, of which seven were associated with significant extinctions.[76]
  • Asteroid impacts: one large impact is associated with a mass extinction, i.e. the Cretaceous–Paleogene extinction event; there have been many smaller impacts but they are not associated with significant extinctions.[78]

The most commonly suggested causes of mass extinctions are listed below.

Flood basalt events

The formation of large igneous provinces by flood basalt events could have:

  • produced dust and particulate aerosols which inhibited photosynthesis and thus caused food chains to collapse both on land and at sea[79]
  • emitted sulfur oxides which were precipitated as acid rain and poisoned many organisms, contributing further to the collapse of food chains
  • emitted carbon dioxide and thus possibly causing sustained global warming once the dust and particulate aerosols dissipated.

Flood basalt events occur as pulses of activity punctuated by dormant periods. As a result, they are likely to cause the climate to oscillate between cooling and warming, but with an overall trend towards warming as the carbon dioxide they emit can stay in the atmosphere for hundreds of years.

It is speculated that massive volcanism caused or contributed to the End-Permian, End-Triassic and End-Cretaceous extinctions.[80] The correlation between gigantic volcanic events expressed in the large igneous provinces and mass extinctions was shown for the last 260 Myr.[81][82] Recently such possible correlation was extended for the whole Phanerozoic Eon.[83]

Sea-level falls

These are often clearly marked by worldwide sequences of contemporaneous sediments which show all or part of a transition from sea-bed to tidal zone to beach to dry land – and where there is no evidence that the rocks in the relevant areas were raised by geological processes such as orogeny. Sea-level falls could reduce the continental shelf area (the most productive part of the oceans) sufficiently to cause a marine mass extinction, and could disrupt weather patterns enough to cause extinctions on land. But sea-level falls are very probably the result of other events, such as sustained global cooling or the sinking of the mid-ocean ridges.

Sea-level falls are associated with most of the mass extinctions, including all of the "Big Five"—End-Ordovician, Late Devonian, End-Permian, End-Triassic, and End-Cretaceous.

A study, published in the journal Nature (online June 15, 2008) established a relationship between the speed of mass extinction events and changes in sea level and sediment.[84] The study suggests changes in ocean environments related to sea level exert a driving influence on rates of extinction, and generally determine the composition of life in the oceans.[85]

Impact events

The impact of a sufficiently large asteroid or comet could have caused food chains to collapse both on land and at sea by producing dust and particulate aerosols and thus inhibiting photosynthesis.[86] Impacts on sulfur-rich rocks could have emitted sulfur oxides precipitating as poisonous acid rain, contributing further to the collapse of food chains. Such impacts could also have caused megatsunamis and/or global forest fires.

Most paleontologists now agree that an asteroid did hit the Earth about 66 Ma ago, but there is an ongoing dispute whether the impact was the sole cause of the Cretaceous–Paleogene extinction event.[87][88]

Global cooling

Sustained and significant global cooling could kill many polar and temperate species and force others to migrate towards the equator; reduce the area available for tropical species; often make the Earth's climate more arid on average, mainly by locking up more of the planet's water in ice and snow. The glaciation cycles of the current ice age are believed to have had only a very mild impact on biodiversity, so the mere existence of a significant cooling is not sufficient on its own to explain a mass extinction.

It has been suggested that global cooling caused or contributed to the End-Ordovician, Permian–Triassic, Late Devonian extinctions, and possibly others. Sustained global cooling is distinguished from the temporary climatic effects of flood basalt events or impacts.

Global warming

This would have the opposite effects: expand the area available for tropical species; kill temperate species or force them to migrate towards the poles; possibly cause severe extinctions of polar species; often make the Earth's climate wetter on average, mainly by melting ice and snow and thus increasing the volume of the water cycle. It might also cause anoxic events in the oceans (see below).

Global warming as a cause of mass extinction is supported by several recent studies.[89]

The most dramatic example of sustained warming is the Paleocene–Eocene Thermal Maximum, which was associated with one of the smaller mass extinctions. It has also been suggested to have caused the Triassic–Jurassic extinction event, during which 20% of all marine families became extinct. Furthermore, the Permian–Triassic extinction event has been suggested to have been caused by warming.[90][91][92]

Clathrate gun hypothesis

Clathrates are composites in which a lattice of one substance forms a cage around another. Methane clathrates (in which water molecules are the cage) form on continental shelves. These clathrates are likely to break up rapidly and release the methane if the temperature rises quickly or the pressure on them drops quickly—for example in response to sudden global warming or a sudden drop in sea level or even earthquakes. Methane is a much more powerful greenhouse gas than carbon dioxide, so a methane eruption ("clathrate gun") could cause rapid global warming or make it much more severe if the eruption was itself caused by global warming.

The most likely signature of such a methane eruption would be a sudden decrease in the ratio of carbon-13 to carbon-12 in sediments, since methane clathrates are low in carbon-13; but the change would have to be very large, as other events can also reduce the percentage of carbon-13.[93]

It has been suggested that "clathrate gun" methane eruptions were involved in the end-Permian extinction ("the Great Dying") and in the Paleocene–Eocene Thermal Maximum, which was associated with one of the smaller mass extinctions.

Anoxic events

Anoxic events are situations in which the middle and even the upper layers of the ocean become deficient or totally lacking in oxygen. Their causes are complex and controversial, but all known instances are associated with severe and sustained global warming, mostly caused by sustained massive volcanism.[94]

It has been suggested that anoxic events caused or contributed to the Ordovician–Silurian, late Devonian, Permian–Triassic and Triassic–Jurassic extinctions, as well as a number of lesser extinctions (such as the Ireviken, Mulde, Lau, Toarcian and Cenomanian–Turonian events). On the other hand, there are widespread black shale beds from the mid-Cretaceous which indicate anoxic events but are not associated with mass extinctions.

The bio-availability of essential trace elements (in particular selenium) to potentially lethal lows has been shown to coincide with, and likely have contributed to, at least three mass extinction events in the oceans, i.e. at the end of the Ordovician, during the Middle and Late Devonian, and at the end of the Triassic. During periods of low oxygen concentrations very soluble selenate (Se6+) is converted into much less soluble selenide (Se2+), elemental Se and organo-selenium complexes. Bio-availability of selenium during these extinction events dropped to about 1% of the current oceanic concentration, a level that has been proven lethal to many extant organisms.[95]

Hydrogen sulfide emissions from the seas

Kump, Pavlov and Arthur (2005) have proposed that during the Permian–Triassic extinction event the warming also upset the oceanic balance between photosynthesising plankton and deep-water sulfate-reducing bacteria, causing massive emissions of hydrogen sulfide which poisoned life on both land and sea and severely weakened the ozone layer, exposing much of the life that still remained to fatal levels of UV radiation.[96][97][98]

Oceanic overturn

Oceanic overturn is a disruption of thermo-haline circulation which lets surface water (which is more saline than deep water because of evaporation) sink straight down, bringing anoxic deep water to the surface and therefore killing most of the oxygen-breathing organisms which inhabit the surface and middle depths. It may occur either at the beginning or the end of a glaciation, although an overturn at the start of a glaciation is more dangerous because the preceding warm period will have created a larger volume of anoxic water.[99]

Unlike other oceanic catastrophes such as regressions (sea-level falls) and anoxic events, overturns do not leave easily identified "signatures" in rocks and are theoretical consequences of researchers' conclusions about other climatic and marine events.

It has been suggested that oceanic overturn caused or contributed to the late Devonian and Permian–Triassic extinctions.

A nearby nova, supernova or gamma ray burst

A nearby gamma-ray burst (less than 6000 light-years away) would be powerful enough to destroy the Earth's ozone layer, leaving organisms vulnerable to ultraviolet radiation from the Sun.[100] Gamma ray bursts are fairly rare, occurring only a few times in a given galaxy per million years.[101] It has been suggested that a supernova or gamma ray burst caused the End-Ordovician extinction.[102]

Geomagnetic reversal

One theory is that periods of increased geomagnetic reversals will weaken Earth's magnetic field long enough to expose the atmosphere to the solar winds, causing oxygen ions to escape the atmosphere in a rate increased by 3–4 orders, resulting in a disastrous decrease in oxygen.[103]

Plate tectonics

Movement of the continents into some configurations can cause or contribute to extinctions in several ways: by initiating or ending ice ages; by changing ocean and wind currents and thus altering climate; by opening seaways or land bridges which expose previously isolated species to competition for which they are poorly adapted (for example, the extinction of most of South America's native ungulates and all of its large metatherians after the creation of a land bridge between North and South America). Occasionally continental drift creates a super-continent which includes the vast majority of Earth's land area, which in addition to the effects listed above is likely to reduce the total area of continental shelf (the most species-rich part of the ocean) and produce a vast, arid continental interior which may have extreme seasonal variations.

Another theory is that the creation of the super-continent Pangaea contributed to the End-Permian mass extinction. Pangaea was almost fully formed at the transition from mid-Permian to late-Permian, and the "Marine genus diversity" diagram at the top of this article shows a level of extinction starting at that time which might have qualified for inclusion in the "Big Five" if it were not overshadowed by the "Great Dying" at the end of the Permian.[104]

Other hypotheses

Many other hypotheses have been proposed, such as the spread of a new disease, or simple out-competition following an especially successful biological innovation. But all have been rejected, usually for one of the following reasons: they require events or processes for which there is no evidence; they assume mechanisms which are contrary to the available evidence; they are based on other theories which have been rejected or superseded.

Scientists have been concerned that human activities could cause more plants and animals to become extinct than any point in the past. Along with human-made changes in climate (see above), some of these extinctions could be caused by overhunting, overfishing, invasive species, or habitat loss. A study published in May 2017 in Proceedings of the National Academy of Sciences argued that a “biological annihilation” akin to a sixth mass extinction event is underway as a result of anthropogenic causes, such as over-population and over-consumption. The study suggested that as much as 50% of the number of animal individuals that once lived on Earth were already extinct, threatening the basis for human existence too.[105][25]

Future biosphere extinction/sterilization

The eventual warming and expanding of the Sun, combined with the eventual decline of atmospheric carbon dioxide could actually cause an even greater mass extinction, having the potential to wipe out even microbes (in other words, the Earth is completely sterilized), where rising global temperatures caused by the expanding Sun will gradually increase the rate of weathering, which in turn removes more and more carbon dioxide from the atmosphere. When carbon dioxide levels get too low (perhaps at 50 ppm), all plant life will die out, although simpler plants like grasses and mosses can survive much longer, until CO2 levels drop to 10 ppm.[106][107]

With all photosynthetic organisms gone, atmospheric oxygen can no longer be replenished, and is eventually removed by chemical reactions in the atmosphere, perhaps from volcanic eruptions. Eventually the loss of oxygen will cause all remaining aerobic life to die out via asphyxiation, leaving behind only simple anaerobic prokaryotes. When the Sun becomes 10% brighter in about a billion years,[106] Earth will suffer a moist greenhouse effect resulting in its oceans boiling away, while the Earth's liquid outer core cools due to the inner core's expansion and causes the Earth's magnetic field to shut down. In the absence of a magnetic field, charged particles from the Sun will deplete the atmosphere and further increase the Earth's temperature to an average of ~420 K (147 °C, 296 °F) in 2.8 billion years, causing the last remaining life on Earth to die out. This is the most extreme instance of a climate-caused extinction event. Since this will only happen late in the Sun's life, such will cause the final mass extinction in Earth's history (albeit a very long extinction event).[106][107]

Effects and recovery

The impact of mass extinction events varied widely. After a major extinction event, usually only weedy species survive due to their ability to live in diverse habitats.[108] Later, species diversify and occupy empty niches. Generally, biodiversity recovers 5 to 10 million years after the extinction event. In the most severe mass extinctions it may take 15 to 30 million years.[108]

The worst event, the Permian–Triassic extinction, devastated life on earth, killing over 90% of species. Life seemed to recover quickly after the P-T extinction, but this was mostly in the form of disaster taxa, such as the hardy Lystrosaurus. The most recent research indicates that the specialized animals that formed complex ecosystems, with high biodiversity, complex food webs and a variety of niches, took much longer to recover. It is thought that this long recovery was due to successive waves of extinction which inhibited recovery, as well as prolonged environmental stress which continued into the Early Triassic. Recent research indicates that recovery did not begin until the start of the mid-Triassic, 4M to 6M years after the extinction;[109] and some writers estimate that the recovery was not complete until 30M years after the P-T extinction, i.e. in the late Triassic.[110] Subsequent to the P-T extinction, there was an increase in provincialization, with species occupying smaller ranges – perhaps removing incumbents from niches and setting the stage for an eventual rediversification.[111]

The effects of mass extinctions on plants are somewhat harder to quantify, given the biases inherent in the plant fossil record. Some mass extinctions (such as the end-Permian) were equally catastrophic for plants, whereas others, such as the end-Devonian, did not affect the flora.[112]


Nota

  1. ^ Dissolved oxygen became more widespread and penetrated to greater depths; the development of life on land reduced the run-off of nutrients and hence the risk of eutrophication and anoxic events; and marine ecosystems became more diversified so that food chains were less likely to be disrupted.

Rujukan

  1. ^ Nee, S. (2004). "Extinction, slime, and bottoms". PLoS Biology. 2 (8): E272. doi:10.1371/journal.pbio.0020272. PMC 509315. PMID 15314670.
  2. ^ a b Ward, Peter D (2006). "Impact from the Deep". Scientific American.
  3. ^
  4. ^ Butterfield, N. J. (2007). "Macroevolution and macroecology through deep time". Palaeontology. 50 (1): 41–55. doi:10.1111/j.1475-4983.2006.00613.x.
  5. ^ a b c d e f Alroy, J. (2008). "Dynamics of origination and extinction in the marine fossil record". Proceedings of the National Academy of Sciences of the United States of America. 105 (Supplement 1): 11536–11542. Bibcode:2008PNAS..10511536A. doi:10.1073/pnas.0802597105. PMC 2556405. PMID 18695240.
  6. ^ "Gould, S. J. (2004). The Evolution of Life on Earth, SCIENTIFIC AMERICAN, INC". Missing or empty |url= (bantuan); |access-date= requires |url= (bantuan)
  7. ^ Briggs, Derek; Crowther, Peter R. (2008-04-15). Palaeobiology II (dalam bahasa Inggeris). John Wiley & Sons. m/s. 223. ISBN 978-0-470-99928-8.
  8. ^ Briggs, Derek; Crowther, Peter R. (2008-04-15). Palaeobiology II (dalam bahasa Inggeris). John Wiley & Sons. m/s. 223. ISBN 978-0-470-99928-8.
  9. ^ St. Fleur, Nicholas (16 February 2017). "After Earth's Worst Mass Extinction, Life Rebounded Rapidly, Fossils Suggest". The New York Times. Dicapai pada 17 February 2017.
  10. ^ a b c Ralat petik: Tag <ref> tidak sah; tiada teks disediakan bagi rujukan yang bernama ucr
  11. ^ Labandeira CC, Sepkoski JJ (1993). "Insect diversity in the fossil record" (PDF). Science. 261 (5119): 310–5. Bibcode:1993Sci...261..310L. doi:10.1126/science.11536548. PMID 11536548.
  12. ^ McElwain, J.C.; Punyasena, S.W. (2007). "Mass extinction events and the plant fossil record". Trends in Ecology & Evolution. 22 (10): 548–557. doi:10.1016/j.tree.2007.09.003. PMID 17919771.
  13. ^ Sahney S; Benton MJ (2008). "Recovery from the most profound mass extinction of all time". Proceedings of the Royal Society B: Biological Sciences. 275 (1636): 759–65. doi:10.1098/rspb.2007.1370. PMC 2596898. PMID 18198148.
  14. ^ Macleod, N.; Rawson, P. F.; Forey, P. L.; Banner, F. T.; Boudagher-Fadel, M. K.; Bown, P. R.; Burnett, J. A.; Chambers, P.; Culver, S.; Evans, S. E.; Jeffery, C.; Kaminski, M. A.; Lord, A. R.; Milner, A. C.; Milner, A. R.; Morris, N.; Owen, E.; Rosen, B. R.; Smith, A. B.; Taylor, P. D.; Urquhart, E.; Young, J. R. (April 1997). "The Cretaceous-Tertiary biotic transition". Journal of the Geological Society. 154 (2): 265–292. Bibcode:1997JGSoc.154..265M. doi:10.1144/gsjgs.154.2.0265.
  15. ^ Raup, D.; Sepkoski Jr, J. (1982). "Mass extinctions in the marine fossil record". Science. 215 (4539): 1501–1503. Bibcode:1982Sci...215.1501R. doi:10.1126/science.215.4539.1501. PMID 17788674.
  16. ^ Fastovsky DE, Sheehan PM (2005). "The extinction of the dinosaurs in North America". GSA Today. 15 (3): 4–10. doi:10.1130/1052-5173(2005)015<4:TEOTDI>2.0.CO;2. ISSN 1052-5173. Diarkibkan daripada yang asal pada 2011-12-09. Unknown parameter |deadurl= ignored (bantuan)
  17. ^ McGhee, G. R.; Sheehan, P. M.; Bottjer, D. J.; Droser, M. L. (2011). "Ecological ranking of Phanerozoic biodiversity crises: The Serpukhovian (early Carboniferous) crisis had a greater ecological impact than the end-Ordovician". Geology. 40 (2): 147–150. Bibcode:2012Geo....40..147M. doi:10.1130/G32679.1.
  18. ^ Sole, R.V., and Newman, M., 2002. "Extinctions and Biodiversity in the Fossil Record – Volume Two, The Earth system: biological and ecological dimensions of global environment change" pp. 297–391, Encyclopedia of Global Environmental Change John Wilely & Sons.
  19. ^ Smith, A.; A. McGowan (2005). "Cyclicity in the fossil record mirrors rock outcrop area". Biology Letters. 1 (4): 443–445. doi:10.1098/rsbl.2005.0345. PMC 1626379. PMID 17148228.
  20. ^ Smith, Andrew B.; McGowan, Alistair J. (2007). "The shape of the Phanerozoic marine palaeodiversity curve: How much can be predicted from the sedimentary rock record of Western Europe?". Palaeontology. 50 (4): 765–774. doi:10.1111/j.1475-4983.2007.00693.x.
  21. ^ Malcolm L. McCallum (27 May 2015). "Vertebrate biodiversity losses point to a sixth mass extinction". Biodiversity and Conservation. 24 (10): 2497–2519. doi:10.1007/s10531-015-0940-6.
  22. ^ Pimm, S. L.; Jenkins, C. N.; Abell, R.; Brooks, T. M.; Gittleman, J. L.; Joppa, L. N.; Raven, P. H.; Roberts, C. M.; Sexton, J. O. (30 May 2014). "The biodiversity of species and their rates of extinction, distribution, and protection". Science. 344 (6187): 1246752. doi:10.1126/science.1246752. PMID 24876501.
  23. ^ "It's official: a global mass extinction is under way – JSTOR Daily". 3 July 2015.
  24. ^ "We're Entering A Sixth Mass Extinction, And It's Our Fault".
  25. ^ a b Sutter, John D. (July 11, 2017). "Sixth mass extinction: The era of 'biological annihilation'". CNN. Dicapai pada July 17, 2017.
  26. ^ Partial list from Image:Extinction Intensity.png
  27. ^ Ripple WJ, Wolf C, Newsome TM, Galetti M, Alamgir M, Crist E, Mahmoud MI, Laurance WF (13 November 2017). "World Scientists' Warning to Humanity: A Second Notice". BioScience. doi:10.1093/biosci/bix125. Moreover, we have unleashed a mass extinction event, the sixth in roughly 540 million years, wherein many current life forms could be annihilated or at least committed to extinction by the end of this century.
  28. ^ Sandom, Christopher; Faurby, Søren; Sandel, Brody; Svenning, Jens-Christian (4 June 2014). "Global late Quaternary megafauna extinctions linked to humans, not climate change". Proceedings of the Royal Society B. 281 (1787): 20133254. doi:10.1098/rspb.2013.3254. Dicapai pada November 19, 2017.
  29. ^ Vignieri, S. (25 July 2014). "Vanishing fauna (Special issue)". Science. 345 (6195): 392–412. doi:10.1126/science.345.6195.392. Although some debate persists, most of the evidence suggests that humans were responsible for extinction of this Pleistocene fauna, and we continue to drive animal extinctions today through the destruction of wild lands, consumption of animals as a resource or a luxury, and persecution of species we see as threats or competitors.
  30. ^ Benitez, Narciso; dll. (2002). "Evidence for Nearby Supernova Explosions". Phys. Rev. Lett. 88 (8): 081101. arXiv:astro-ph/0201018. Bibcode:2002PhRvL..88h1101B. doi:10.1103/PhysRevLett.88.081101. PMID 11863949.
  31. ^ Fimiani, L.; Cook, D. L.; Faestermann, T.; Gómez-Guzmán, J. M.; Hain, K.; Herzog, G.; Knie, K.; Korschinek, G.; Ludwig, P.; Park, J.; Reedy, R. C.; Rugel, G. (13 April 2016). "Interstellar 60Fe on the Surface of the Moon". Physical Review Letters. 116 (15): 151104. Bibcode:2016PhRvL.116o1104F. doi:10.1103/PhysRevLett.116.151104.
  32. ^ "Pliocene-Pleistocene boundary: did Eltanin asteroid kickstart the ice ages?". Diarkibkan daripada yang asal pada 2017-10-03. Dicapai pada 2018-08-04.
  33. ^ "Did a Killer Asteroid Drive the Planet Into An Ice Age? – Universe Today". 20 September 2012.
  34. ^ Holbourn, Ann; Kuhnt, Wolfgang; Schulz, Michael; Erlenkeuser, Helmut (2005). "Impacts of orbital forcing and atmospheric carbon dioxide on Miocene ice-sheet expansion". Nature. 438 (7067): 483–487. Bibcode:2005Natur.438..483H. doi:10.1038/nature04123.
  35. ^ "Russia's Popigai Meteor Crash Linked to Mass Extinction". June 13, 2014.
  36. ^ Randall, Lisa (2015). Dark Matter and the Dinosaurs. New York: Ecco/HarperCollins Publishers. m/s. 196–217. ISBN 978-0-06-232847-2.
  37. ^ Keller G (2012). "The Cretaceous–Tertiary Mass Extinction, Chicxulub Impact, and Deccan Volcanism. Earth and Life". Dalam Talent JA (penyunting). Earth and Life: Global Biodiversity, Extinction Intervals and Biogeographic Perturbations Through Time. Springer. m/s. 759–793. ISBN 978-90-481-3427-4.
  38. ^ David Bond; Paul Wignall. "Large igneous provinces and mass extinctions: An update" (PDF). m/s. 17. Diarkibkan daripada yang asal (PDF) pada 2016-01-24. Unknown parameter |deadurl= ignored (bantuan)
  39. ^ József Pálfy; Paul Smith. "Synchrony between Early Jurassic extinction, oceanic anoxic event, and the Karoo-Ferrar flood basalt volcanism". Missing or empty |url= (bantuan)
  40. ^ Blackburn, Terrence J.; Olsen, Paul E.; Bowring, Samuel A.; McLean, Noah M.; Kent, Dennis V; Puffer, John; McHone, Greg; Rasbury, Troy; Et-Touhami7, Mohammed (2013). "Zircon U-Pb Geochronology Links the End-Triassic Extinction with the Central Atlantic Magmatic Province". Science. 340 (6135): 941–945. Bibcode:2013Sci...340..941B. doi:10.1126/science.1234204. PMID 23519213.CS1 maint: ref duplicates default (link)
  41. ^ Dal Corso, J.; Mietto, P.; Newton, R.J.; Pancost, R.D.; Preto, N.; Roghi, G.; Wignall, P.B. (2012). "Discovery of a major negative δ13C spike in the Carnian (Late Triassic) linked to the eruption of Wrangellia flood basalts". Geology. 40 (1): 79–82. Bibcode:2012Geo....40...79D. doi:10.1130/g32473.1.
  42. ^ Campbell, I; Czamanske, G.; Fedorenko, V.; Hill, R.; Stepanov, V. (1992). "Synchronism of the Siberian Traps and the Permian-Triassic Boundary". Science. 258 (5089): 1760–1763. Bibcode:1992Sci...258.1760C. doi:10.1126/science.258.5089.1760. PMID 17831657.
  43. ^ von Frese, R; Potts, L.; Wells, S.; Leftwich, T.; Kim, H. (2009). "GRACE gravity evidence for an impact basin in Wilkes Land, Antarctica". Geochemistry, Geophysics, Geosystems. 10 (2): n/a. Bibcode:2009GGG....10.2014V. doi:10.1029/2008GC002149.
  44. ^ Bond, David P. G.; Wignall, Paul B. (2014-09-01). "Large igneous provinces and mass extinctions: An update". Geological Society of America Special Papers (dalam bahasa Inggeris). 505: 29–55. doi:10.1130/2014.2505(02). ISSN 0072-1077.
  45. ^ J, Ricci et al, (2013). "New 40Ar/39Ar and K–Ar ages of the Viluy traps (Eastern Siberia): Further evidence for a relationship with the Frasnian–Famennian mass extinction". Palaeogeography, Palaeoclimatology, Palaeoecology. 386: 531–540. doi:10.1016/j.palaeo.2013.06.020.CS1 maint: extra punctuation (link)
  46. ^ Jeppsson, L. (1998). "Silurian oceanic events: summary of general characteristics". Silurian Cycles: Linkages of Dynamic Stratigraphy with Atmospheric, Oceanic and Tectonic Changes. James Hall Centennial Volume. New York State Museum Bulletin. 491. m/s. 239–257. Unknown parameter |editors= ignored (bantuan)
  47. ^ Jeppsson, L.; Calner, M. (2007). "The Silurian Mulde Event and a scenario for secundo—secundo events". Earth and Environmental Science Transactions of the Royal Society of Edinburgh. 93 (2): 135–154. doi:10.1017/s0263593300000377.
  48. ^ Jeppsson, L (1997). "The anatomy of the Mid-Early Silurian Ireviken Event and a scenario for P-S events". Dalam Brett, C.E.; Baird, G.C. (penyunting). Paleontological Events: Stratigraphic, Ecological, and Evolutionary Implications. New York: Columbia University Press. m/s. 451–492.
  49. ^ Melott, A.L.; dll. (2004). "Did a gamma-ray burst initiate the late Ordovician mass extinction?". International Journal of Astrobiology. 3: 55–61. arXiv:astro-ph/0309415. Bibcode:2004IJAsB...3...55M. doi:10.1017/S1473550404001910.
  50. ^ Benton, M.J. (2004). "6. Reptiles Of The Triassic". Vertebrate Palaeontology. Blackwell. ISBN 0-04-566002-6.
  51. ^ Van Valkenburgh, B. (1999). "Major patterns in the history of carnivorous mammals". Annual Review of Earth and Planetary Sciences. 27: 463–493. Bibcode:1999AREPS..27..463V. doi:10.1146/annurev.earth.27.1.463.
  52. ^ Jablonski, D. (2002). "Survival without recovery after mass extinctions". PNAS. 99 (12): 8139–8144. Bibcode:2002PNAS...99.8139J. doi:10.1073/pnas.102163299. PMC 123034. PMID 12060760.
  53. ^ Hallam, Anthony, & Wignall, P. B. (2002). Mass Extinctions and Their Aftermath. New York: Oxford University Press Inc.
  54. ^ Beardsley, Tim (1988). "Star-struck?". Scientific American.
  55. ^ Raup, DM; Sepkoski Jr, JJ (1984). "Periodicity of extinctions in the geologic past". Proceedings of the National Academy of Sciences of the United States of America. 81 (3): 801–5. Bibcode:1984PNAS...81..801R. doi:10.1073/pnas.81.3.801. PMC 344925. PMID 6583680.
  56. ^ Different cycle lengths have been proposed; e.g. by Rohde, R.; Muller, R. (2005). "Cycles in fossil diversity". Nature. 434 (7030): 208–210. Bibcode:2005Natur.434..208R. doi:10.1038/nature03339. PMID 15758998.
  57. ^ R. A. Muller. "Nemesis". Muller.lbl.gov. Dicapai pada 2007-05-19.
  58. ^ Adrian L. Melott; Richard K. Bambach (2010-07-02). "Nemesis Reconsidered". Monthly Notices of the Royal Astronomical Society. Dicapai pada 2010-07-02.
  59. ^ Gillman, M.; Erenler, H. (2008). "The galactic cycle of extinction" (PDF). International Journal of Astrobiology. 7: 17. Bibcode:2008IJAsB...7...17G. doi:10.1017/S1473550408004047.
  60. ^ Bailer-Jones, C. A. L. (2009). "The evidence for and against astronomical impacts on climate change and mass extinctions: a review". International Journal of Astrobiology. 8 (3): 213–219. arXiv:0905.3919. Bibcode:2009IJAsB...8..213B. doi:10.1017/S147355040999005X.
  61. ^ Overholt, A. C.; Melott, A. L.; Pohl, M. (2009). "Testing the link between terrestrial climate change and galactic spiral arm transit". The Astrophysical Journal. 705 (2): L101–L103. arXiv:0906.2777. Bibcode:2009ApJ...705L.101O. doi:10.1088/0004-637X/705/2/L101.
  62. ^ Melott, A.L.; Bambach, R.K. (2011). "A ubiquitous ~62-Myr periodic fluctuation superimposed on general trends in fossil biodiversity. I. Documentation". Paleobiology. 37: 92–112. arXiv:1005.4393. doi:10.1666/09054.1.
  63. ^ Melott, A.L.; Bambach, Richard K.; Petersen, Kenni D.; McArthur, John M.; dll. (2012). "A ~60 Myr periodicity is common to marine-87Sr/86Sr, fossil biodiversity, and large-scale sedimentation: what does the periodicity reflect?". Journal of Geology. 120 (2): 217–226. arXiv:1206.1804. Bibcode:2012JG....120..217M. doi:10.1086/663877.
  64. ^ a b Arens, N. C.; West, I. D. (2008). "Press-pulse: a general theory of mass extinction?". Paleobiology. 34 (4): 456–471. doi:10.1666/07034.1.
  65. ^ a b c Wang, S. C.; Bush, A. M. (2008). "Adjusting global extinction rates to account for taxonomic susceptibility". Paleobiology. 34 (4): 434–455. doi:10.1666/07060.1.
  66. ^ Budd, G. E. (2003). "The Cambrian Fossil Record and the Origin of the Phyla". Integrative and Comparative Biology. 43 (1): 157–165. doi:10.1093/icb/43.1.157. PMID 21680420.
  67. ^ Martin, R.E. (1995). "Cyclic and secular variation in microfossil biomineralization: clues to the biogeochemical evolution of Phanerozoic oceans". Global and Planetary Change. 11 (1): 1–23. Bibcode:1995GPC....11....1M. doi:10.1016/0921-8181(94)00011-2.
  68. ^ Martin, R.E. (1996). "Secular increase in nutrient levels through the Phanerozoic: Implications for productivity, biomass, and diversity of the marine biosphere". PALAIOS. 11 (3): 209–219. doi:10.2307/3515230. JSTOR 3515230.
  69. ^ Marshall, C.R.; Ward, P.D. (1996). "Sudden and Gradual Molluscan Extinctions in the Latest Cretaceous of Western European Tethys". Science. 274 (5291): 1360–1363. Bibcode:1996Sci...274.1360M. doi:10.1126/science.274.5291.1360. PMID 8910273.
  70. ^ Arens, N.C. and West, I.D. (2006). "Press/Pulse: A General Theory of Mass Extinction?" 'GSA Conference paper' Abstract Diarkibkan 2017-01-18 di Wayback Machine
  71. ^ MacLeod, N (2001-01-06). "Extinction!".
  72. ^ Courtillot, V., Jaeger, J-J., Yang, Z., Féraud, G., Hofmann, C. (1996). "The influence of continental flood basalts on mass extinctions: where do we stand?" in Ryder, G., Fastovsky, D., and Gartner, S, eds. "The Cretaceous-Tertiary event and other catastrophes in earth history". The Geological Society of America, Special Paper 307, 513–525.
  73. ^ Hallam, A. (1992). Phanerozoic sea-level changes. New York: Columbia University Press. ISBN 0231074247.
  74. ^ Grieve, R.; Rupert, J.; Smith, J.; Therriault, A. (1996). "The record of terrestrial impact cratering". GSA Today. 5: 193–195.
  75. ^ The earliest known flood basalt event is the one which produced the Siberian Traps and is associated with the end-Permian extinction.
  76. ^ a b Some of the extinctions associated with flood basalts and sea-level falls were significantly smaller than the "major" extinctions, but still much greater than the background extinction level.
  77. ^ Wignall, P.B. (2001). "Large igneous provinces and mass extinctions". Earth-Science Reviews. 53 (1–2): 1–33. Bibcode:2001ESRv...53....1W. doi:10.1016/S0012-8252(00)00037-4.
  78. ^ Brannen, Peter (2017). The Ends of the World: Volcanic Apocalypses, Lethal Oceans, and Our Quest to Understand Earth's Past Mass Extinctions. Harper Collins. m/s. 336. ISBN 9780062364807.
  79. ^ http://www.nature.com/scientificamerican/journal/v263/n4/pdf/scientificamerican1090-85.pdf
  80. ^ "Causes of the Cretaceous Extinction".
  81. ^ Courtillot, V. (1994). "Mass extinctions in the last 300 million years: one impact and seven flood basalts?". Israel Journal of Earth Sciences. 43: 255–266.
  82. ^ Courtillot, V. E., Renne, P. R., 2003. On the ages of flood basalt events. Comptes Rendus Geosciences 335 (1), 113–140.
  83. ^ Kravchinsky, V. A. (2012). "Paleozoic large igneous provinces of Northern Eurasia: Correlation with mass extinction events" (PDF). Global and Planetary Change. 86: 31–36. Bibcode:2012GPC....86...31K. doi:10.1016/j.gloplacha.2012.01.007.
  84. ^ Peters, S.E. (June 15, 2008). "Environmental determinants of extinction selectivity in the fossil record". Nature. 454 (7204): 626–9. Bibcode:2008Natur.454..626P. doi:10.1038/nature07032. PMID 18552839.
  85. ^ Newswise: Ebb and Flow of the Sea Drives World's Big Extinction Events Retrieved on June 15, 2008.
  86. ^ Alvarez, Walter; Kauffman, Erle; Surlyk, Finn; Alvarez, Luis; Asaro, Frank; Michel, Helen (Mar 16, 1984). "Impact theory of mass extinctions and the invertebrate fossil record". Science. 223 (4641): 1135–1141. Bibcode:1984Sci...223.1135A. doi:10.1126/science.223.4641.1135. JSTOR 1692570. PMID 17742919.
  87. ^ Keller G, Abramovich S, Berner Z, Adatte T (1 January 2009). "Biotic effects of the Chicxulub impact, K–T catastrophe and sea level change in Texas". Palaeogeography, Palaeoclimatology, Palaeoecology. 271 (1–2): 52–68. doi:10.1016/j.palaeo.2008.09.007.
  88. ^ Morgan J, Lana C, Kersley A, Coles B, Belcher C, Montanari S, Diaz-Martinez E, Barbosa A, Neumann V (2006). "Analyses of shocked quartz at the global K-P boundary indicate an origin from a single, high-angle, oblique impact at Chicxulub" (PDF). Earth and Planetary Science Letters. 251 (3–4): 264–279. Bibcode:2006E&PSL.251..264M. doi:10.1016/j.epsl.2006.09.009.
  89. ^ Mayhew, Peter J.; Gareth B. Jenkins; Timothy G. Benton (January 7, 2008). "A long-term association between global temperature and biodiversity, origination and extinction in the fossil record". Proceedings of the Royal Society B: Biological Sciences. 275 (1630): 47–53. doi:10.1098/rspb.2007.1302. PMC 2562410. PMID 17956842.
  90. ^ Knoll, A. H.; Bambach, R. K.; Canfield, D. E.; Grotzinger, J.P. (26 July 1996). "Fossil record supports evidence of impending mass extinction". Science. 273 (5274): 452–457. Bibcode:1996Sci...273..452K. doi:10.1126/science.273.5274.452. PMID 8662528.
  91. ^ Ward, Peter D.; Jennifer Botha; Roger Buick; Michiel O. De Kock; Douglas H. Erwin; Geoffrey H. Garrison; Joseph L. Kirschvink; Roger Smith (4 February 2005). "Abrupt and Gradual Extinction Among Late Permian Land Vertebrates in the Karoo Basin, South Africa". Science. 307 (5710): 709–714. Bibcode:2005Sci...307..709W. doi:10.1126/science.1107068. PMID 15661973.
  92. ^ Kiehl, Jeffrey T.; Christine A. Shields (September 2005). "Climate simulation of the latest Permian: Implications for mass extinction". Geology. 33 (9): 757–760. Bibcode:2005Geo....33..757K. doi:10.1130/G21654.1.
  93. ^ Hecht, J (2002-03-26). "Methane prime suspect for greatest mass extinction". New Scientist.
  94. ^ Jenkyns, Hugh C. (2010-03-01). "Geochemistry of oceanic anoxic events". Geochemistry, Geophysics, Geosystems (dalam bahasa Inggeris). 11 (3): Q03004. Bibcode:2010GGG....11.3004J. doi:10.1029/2009GC002788. ISSN 1525-2027.
  95. ^ Long, J.; Large, R.R.; Lee, M.S.Y.; Benton, M. J.; Danyushevsky, L.V.; Chiappe, L.M.; Halpin, J.A.; Cantrill, D. & Lottermoser, B. (2015). "Severe Selenium depletion in the Phanerozoic oceans as a factor in three global mass extinction events". Gondwana Research. 36: 209. Bibcode:2016GondR..36..209L. doi:10.1016/j.gr.2015.10.001.
  96. ^ Berner, R. A., and Ward, P. D. (2004). "Positive Reinforcement, H2S, and the Permo-Triassic Extinction: Comment and Reply" describes possible positive feedback loops in the catastrophic release of hydrogen sulfide proposed by Kump, Pavlov and Arthur (2005).
  97. ^ Kump, L. R.; Pavlov, A.; Arthur, M. A. (2005). "Massive release of hydrogen sulfide to the surface ocean and atmosphere during intervals of oceanic anoxia". Geology. 33: 397–400. Bibcode:2005Geo....33..397K. doi:10.1130/g21295.1. Summarised by Ward (2006).
  98. ^ Ward, P.D. (2006). "Impact from the Deep". Scientific American.
  99. ^ Wilde, P; Berry, W.B.N. (1984). "Destabilization of the oceanic density structure and its significance to marine "extinction" events". Palaeogeography, Palaeoclimatology, Palaeoecology. 48 (2–4): 143–162. Bibcode:1984PPP....48..143W. doi:10.1016/0031-0182(84)90041-5.
  100. ^ Corey S. Powell (2001-10-01). "20 Ways the World Could End". Discover Magazine. Diarkibkan daripada yang asal pada 2010-09-19. Dicapai pada 2011-03-29.
  101. ^ Podsiadlowski, Ph.; dll. (2004). "The Rates of Hypernovae and Gamma-Ray Bursts: Implications for Their Progenitors". Astrophysical Journal Letters. 607: L17. arXiv:astro-ph/0403399. Bibcode:2004ApJ...607L..17P. doi:10.1086/421347.
  102. ^ Melott, A. L.; Thomas, B. C. (2009). "Late Ordovician geographic patterns of extinction compared with simulations of astrophysical ionizing radiation damage". Paleobiology. 35 (3): 311–320. arXiv:0809.0899. doi:10.1666/0094-8373-35.3.311.
  103. ^ Wei, Yong; Pu, Zuyin; Zong, Qiugang; Wan, Weixing; Ren, Zhipeng; Fraenz, Markus; Dubinin, Eduard; Tian, Feng; Shi, Quanqi; Fu, Suiyan; Hong, Minghua (1 May 2014). "Oxygen escape from the Earth during geomagnetic reversals: Implications to mass extinction". Earth and Planetary Science Letters. 394: 94–98. Bibcode:2014E&PSL.394...94W. doi:10.1016/j.epsl.2014.03.018 – melalui NASA ADS.
  104. ^ "Speculated Causes of the Permian Extinction". Hooper Virtual Paleontological Museum. Dicapai pada 16 July 2012.
  105. ^ Ceballos, Gerardo; Ehrlich, Paul R.; Dirzo, Rodolfo (2017-07-10). "Biological annihilation via the ongoing sixth mass extinction signaled by vertebrate population losses and declines". Proceedings of the National Academy of Sciences (dalam bahasa Inggeris). 114 (30): E6089–E6096. doi:10.1073/pnas.1704949114. ISSN 0027-8424. PMC 5544311. PMID 28696295.
  106. ^ a b c Franck, S; Bounama, C; von Bloh, W (2006). "Causes and Timing of Future Biosphere Extinction" (PDF). Biogeosciences. 3: 85. Bibcode:2006BGeo....3...85F. doi:10.5194/bg-3-85-2006.
  107. ^ a b Ward, Peter; Brownlee, Donald (December 2003). The Life and Death of Planet Earth: How the New Science of Astrobiology Charts the Ultimate Fate of Our World (Google Books). Henry Holt and Co. m/s. 132, 139, 141. ISBN 978-0-8050-7512-0. moist greenhouse effect
  108. ^ a b David Quammen (October 1998). "Planet of Weeds" (PDF). Harper's Magazine. Dicapai pada November 15, 2012CS1 maint: postscript (link)
  109. ^ Lehrmann; D.J.; Ramezan; J.; Bowring; S.A.; dll. (December 2006). "Timing of recovery from the end-Permian extinction: Geochronologic and biostratigraphic constraints from south China". Geology. 34 (12): 1053–1056. Bibcode:2006Geo....34.1053L. doi:10.1130/G22827A.1.
  110. ^ Sahney, S.; Benton, M.J. (2008). "Recovery from the most profound mass extinction of all time". Proceedings of the Royal Society B: Biological Sciences. 275 (1636): 759–65. doi:10.1098/rspb.2007.1370. PMC 2596898. PMID 18198148.
  111. ^ Sidor, C. A.; Vilhena, D. A.; Angielczyk, K. D.; Huttenlocker, A. K.; Nesbitt, S. J.; Peecook, B. R.; Steyer, J. S.; Smith, R. M. H.; Tsuji, L. A. (2013). "Provincialization of terrestrial faunas following the end-Permian mass extinction". Proceedings of the National Academy of Sciences. 110 (20): 8129–8133. Bibcode:2013PNAS..110.8129S. doi:10.1073/pnas.1302323110. PMC 3657826. PMID 23630295.
  112. ^ Cascales-Miñana, B.; Cleal, C. J. (2011). "Plant fossil record and survival analyses". Lethaia. 45: 71. doi:10.1111/j.1502-3931.2011.00262.x.

Pautan luar