Peristiwa kepupusan (juga dikenali sebagai kepupusan besar-besaran atau krisis biotik) adalah penurunan meluas dalam kepelbagaian biologi di Bumi. Kejadian sedemikian dikenal pasti dengan perubahan mengejut dalam kepelbagaian dan banyaknya organisma multiselular. Ia berlaku apabila kadar kepupusan meningkat berbanding kadar spesiasi. Oleh sebab kebanyakan kepelbagaian dan biomassa di Bumi merupakan mikroba, dan dengan itu sukar untuk diukur, peristiwa kepupusan yang direkodkan mempengaruhi komponen biosfera yang mudah diperhatikan, secara biologi kompleks dan bukannya jumlah kepelbagaian dan kelimpahan hidup.[1]
Kepupusan berlaku pada kadar yang tidak sekata. Berdasarkan rekod fosil, kadar latar belakang kepupusan di Bumi adalah kira-kira dua hingga lima taksonomi keluarga haiwan laut setiap sejuta tahun. Fosil marin kebanyakannya digunakan untuk mengukur kadar kepupusan kerana rekod fosil dan stratigrafi yang lebih baik berbanding haiwan darat.
Peristiwa Oksigenasi Besar mungkin merupakan peristiwa kepupusan utama yang pertama. Sejak ledakan Cambria lima kepupusan besar-besaran utama telah melebihi kadar kepupusan latar belakang. Paling diketahui dan paling terkenal, peristiwa kepupusan usia Kapur Cretaceous-Paleogen, yang berlaku kira-kira 66 juta tahun yang lalu (Ma), adalah kepupusan besar-besaran haiwan dan tumbuhan dalam masa geologi yang singkat.[2] Sebagai tambahan kepada lima kepupusan besar-besaran besar, terdapat banyak juga kepupusan kecil dan besar-besaran berterusan yang disebabkan oleh aktiviti manusia, yang kadang-kala digelar kepupusan keenam.[3] Kepupusan massa seolah-olah terutamanya merupakan fenomena Fanerozoik, dengan kadar kepupusan rendah sebelum organisma kompleks besar muncul.[4]
Anggaran bilangan kepupusan besar-besaran besar dalam tempoh 540 juta tahun lepas adalah antara lima hingga lebih daripada dua puluh. Perbezaan ini terletak dari ambang yang dipilih untuk menggambarkan peristiwa kepupusan sebagai "utama", dan data yang dipilih untuk mengukur kepelbagaian masa lalu.
Tolong bantu menterjemahkan sebahagian rencana ini. Rencana ini memerlukan kemaskini dalam Bahasa Melayu piawai Dewan Bahasa dan Pustaka. Sila membantu, bahan-bahan boleh didapati di Peristiwa kepupusan(Inggeris).
Jika anda ingin menilai rencana ini, anda mungkin mahu menyemak di terjemahan Google. Walau bagaimanapun, jangan menambah terjemahan automatik kepada rencana, kerana ini biasanya mempunyai kualiti yang sangat teruk. Sumber-sumber bantuan:Pusat Rujukan Persuratan Melayu.
Peristiwa kepupusan utama
Dalam satu kertas kerja penting yang diterbitkan pada tahun 1982, Jack Sepkoski dan David M. Raup telah mengenal pasti lima kepupusan besar-besaran. Mereka pada asalnya dikenal pasti sebagai penyebab terpisah ("outliers") kepada trend umum penurunan kadar kepupusan semasa Fanerozoik,[5] tetapi ketika ujian statistik yang lebih ketat telah digunakan pada data yang terkumpul, ia didapati bahawa kehidupan haiwan multiselular telah mengalami lima kepupusan besar-besaran utama dan banyak yang lebih kecil.[6] "Lima Kepupusan Besar" tidak boleh ditakrifkan dengan jelas, tetapi sebaliknya kelihatan mewakili yang terbesar (atau yang paling besar) dari suatu peristiwa yang secara berterusan dalam kontinum rata peristiwa kepupusan.[5]
Peristiwa kepupusan Silures-Ordovic (Akhir Ordovic atau O–S): 450–440 Ma (juta tahun yang lalu) di peralihan Silures-Ordovic. Dua peristiwa berlaku yang membunuh 27% daripada semua keluarga, 57% daripada semua genera dan 60% hingga 70% daripada semua spesies. Secara keseluruhan ia disenaraikan oleh ramai ahli sains sebagai yang kedua terbesar dari lima kepupusan utama dalam sejarah Bumi dari segi peratusan genera yang menjadi pupus.
Kepupusan Ordovic Akhir: 375–360 Ma berhampiran perubahan Karbon-Devonian. Pada akhir zaman Frasnian di bahagian akhir Tempoh Devon, satu siri kepupusan yang berpanjangan menghapuskan kira-kira 19% daripada semua keluarga, 50% daripada semua genera[7] dan sekurang-kurangnya 70% daripada semua spesies.[8] Peristiwa kepupusan ini berlangsung mungkin selama 20 juta tahun, dan terdapat bukti untuk beberapa siri denyutan kepupusan dalam tempoh ini.
Peristiwa kepupusan Trias-Permian (Permian Akhir): 252 Ma at the Permian–Triassic transition.[9] Earth's largest extinction killed 57% of all families, 83% of all genera and 90% to 96% of all species[10] (53% of marine families, 84% of marine genera, about 96% of all marine species and an estimated 70% of land species,[2] including insects).[11] The highly successful marine arthropod, the trilobite, became extinct. The evidence regarding plants is less clear, but new taxa became dominant after the extinction.[12] The "Great Dying" had enormous evolutionary significance: on land, it ended the primacy of mammal-like reptiles. The recovery of vertebrates took 30 million years,[13] but the vacant niches created the opportunity for archosaurs to become ascendant. In the seas, the percentage of animals that were sessile dropped from 67% to 50%. The whole late Permian was a difficult time for at least marine life, even before the "Great Dying".
Triassic–Jurassic extinction event (End Triassic): 201.3 Ma at the Triassic–Jurassic transition. About 23% of all families, 48% of all genera (20% of marine families and 55% of marine genera) and 70% to 75% of all species became extinct.[10] Most non-dinosaurian archosaurs, most therapsids, and most of the large amphibians were eliminated, leaving dinosaurs with little terrestrial competition. Non-dinosaurian archosaurs continued to dominate aquatic environments, while non-archosaurian diapsids continued to dominate marine environments. The Temnospondyl lineage of large amphibians also survived until the Cretaceous in Australia (e.g., Koolasuchus).
Cretaceous–Paleogene extinction event (End Cretaceous, K–Pg extinction, or formerly K–T extinction): 66 Ma at the Cretaceous (Maastrichtian) – Paleogene (Danian) transition interval.[14] The event formerly called the Cretaceous-Tertiary or K–T extinction or K–T boundary is now officially named the Cretaceous–Paleogene (or K–Pg) extinction event. About 17% of all families, 50% of all genera[10] and 75% of all species became extinct.[15] In the seas all the ammonites, plesiosaurs and mosasaurs disappeared and the percentage of sessile animals (those unable to move about) was reduced to about 33%. All non-avian dinosaurs became extinct during that time.[16] The boundary event was severe with a significant amount of variability in the rate of extinction between and among different clades. Mammals and birds, the latter descended from theropod dinosaurs, emerged as dominant large land animals.
Disebalik popular bagi lima peristiwa ini, tidak ada garis pasti yang memisahkan mereka daripada peristiwa-peristiwa kepupusan lain; menggunakan kaedah yang berbeza untuk mengira kesan kepupusan boleh membawa kepada peristiwa lain yang menonjol di lima teratas.[17]
Rekod-rekod fosil yang lebih tua adalah lebih sukar untuk mentafsir. Ini adalah kerana:
Fosil lama lebih sukar dicari kerana ia biasanya tertanam pada kedalaman yang besar.
Memberi tarikh fosil yang lebih tua lebih sukar.
Lapisan fosil yang produktif diteliti lebih daripada yang tidak produktif, dengan itu meninggalkan tempoh tertentu yang kurang dikaji.
Peristiwa alam sekitar prasejarah boleh mengganggu proses pemendapan.
Pemeliharaan fosil berbeza-beza di tanah, tetapi fosil marin cenderung lebih baik terpelihara daripada ia yang dicari oleh rakan-rakan di daratan.[18]
It has been suggested that the apparent variations in marine biodiversity may actually be an artifact, with abundance estimates directly related to quantity of rock available for sampling from different time periods.[19] However, statistical analysis shows that this can only account for 50% of the observed pattern,[perlu rujukan] and other evidence (such as fungal spikes)[Penjelasan diperlukan] provides reassurance that most widely accepted extinction events are real. A quantification of the rock exposure of Western Europe indicates that many of the minor events for which a biological explanation has been sought are most readily explained by sampling bias.[20]
Research completed after the seminal 1982 paper has concluded that a sixth mass extinction event is ongoing:
More recent research has indicated that the End-Capitanian extinction event likely constitutes a separate extinction event from the Permian–Triassic extinction event; if so, it would be larger than many of the "Big Five" extinction events.
Rising oxygen levels in the atmosphere due to the development of photosynthesis
Evolutionary importance
Templat:Life timeline
Mass extinctions have sometimes accelerated the evolution of life on Earth. When dominance of particular ecological niches passes from one group of organisms to another, it is rarely because the new dominant group is "superior" to the old and usually because an extinction event eliminates the old dominant group and makes way for the new one.[50][51]
For example, mammaliformes ("almost mammals") and then mammals existed throughout the reign of the dinosaurs, but could not compete for the large terrestrial vertebrate niches which dinosaurs monopolized. The end-Cretaceous mass extinction removed the non-avian dinosaurs and made it possible for mammals to expand into the large terrestrial vertebrate niches. Ironically, the dinosaurs themselves had been beneficiaries of a previous mass extinction, the end-Triassic, which eliminated most of their chief rivals, the crurotarsans.
Another point of view put forward in the Escalation hypothesis predicts that species in ecological niches with more organism-to-organism conflict will be less likely to survive extinctions. This is because the very traits that keep a species numerous and viable under fairly static conditions become a burden once population levels fall among competing organisms during the dynamics of an extinction event.
Furthermore, many groups which survive mass extinctions do not recover in numbers or diversity, and many of these go into long-term decline, and these are often referred to as "Dead Clades Walking".[52]
Darwin was firmly of the opinion that biotic interactions, such as competition for food and space—the ‘struggle for existence’—were of considerably greater importance in promoting evolution and extinction than changes in the physical environment. He expressed this in The Origin of Species: "Species are produced and exterminated by slowly acting causes…and the most import of all causes of organic change is one which is almost independent of altered…physical conditions, namely the mutual relation of organism to organism-the improvement of one organism entailing the improvement or extermination of others".[53]
Patterns in frequency
It has been suggested variously that extinction events occurred periodically, every 26 to 30 million years,[54][55] or that diversity fluctuates episodically every ~62 million years.[56]
Various ideas attempt to explain the supposed pattern, including the presence of a hypothetical companion star to the sun,[57][58]
oscillations in the galactic plane, or passage through the Milky Way's spiral arms.[59] However, other authors have concluded the data on marine mass extinctions do not fit with the idea that mass extinctions are periodic, or that ecosystems gradually build up to a point at which a mass extinction is inevitable.[5] Many of the proposed correlations have been argued to be spurious.[60][61]
Others have argued that there is strong evidence supporting periodicity in a variety of records,[62]
and additional evidence in the form of coincident periodic variation in nonbiological geochemical variables.[63]Templat:Phanerozoic biodiversity
Mass extinctions are thought to result when a long-term stress is compounded by a short term shock.[64] Over the course of the Phanerozoic, individual taxa appear to be less likely to become extinct at any time,[65] which may reflect more robust food webs as well as less extinction-prone species and other factors such as continental distribution.[65]
However, even after accounting for sampling bias, there does appear to be a gradual decrease in extinction and origination rates during the Phanerozoic.[5] This may represent the fact that groups with higher turnover rates are more likely to become extinct by chance; or it may be an artefact of taxonomy: families tend to become more speciose, therefore less prone to extinction, over time;[5] and larger taxonomic groups (by definition) appear earlier in geological time.[66]
It has also been suggested that the oceans have gradually become more hospitable to life over the last 500 million years, and thus less vulnerable to mass extinctions,[note 1][67][68] but susceptibility to extinction at a taxonomic level does not appear to make mass extinctions more or less probable.[65]
Causes
There is still debate about the causes of all mass extinctions. In general, large extinctions may result when a biosphere under long-term stress undergoes a short-term shock.[64] An underlying mechanism appears to be present in the correlation of extinction and origination rates to diversity. High diversity leads to a persistent increase in extinction rate; low diversity to a persistent increase in origination rate. These presumably ecologically controlled relationships likely amplify smaller perturbations (asteroid impacts, etc.) to produce the global effects observed.[5]
Identifying causes of particular mass extinctions
A good theory for a particular mass extinction should: (i) explain all of the losses, not just focus on a few groups (such as dinosaurs); (ii) explain why particular groups of organisms died out and why others survived; (iii) provide mechanisms which are strong enough to cause a mass extinction but not a total extinction; (iv) be based on events or processes that can be shown to have happened, not just inferred from the extinction.
It may be necessary to consider combinations of causes. For example, the marine aspect of the end-Cretaceous extinction appears to have been caused by several processes which partially overlapped in time and may have had different levels of significance in different parts of the world.[69]
Arens and West (2006) proposed a "press / pulse" model in which mass extinctions generally require two types of cause: long-term pressure on the eco-system ("press") and a sudden catastrophe ("pulse") towards the end of the period of pressure.[70]
Their statistical analysis of marine extinction rates throughout the Phanerozoic suggested that neither long-term pressure alone nor a catastrophe alone was sufficient to cause a significant increase in the extinction rate.
Most widely supported explanations
Macleod (2001)[71] summarized the relationship between mass extinctions and events which are most often cited as causes of mass extinctions, using data from Courtillot et al. (1996),[72] Hallam (1992)[73] and Grieve et al. (1996):[74]
Flood basalt events: 11 occurrences, all associated with significant extinctions[75][76] But Wignall (2001) concluded that only five of the major extinctions coincided with flood basalt eruptions and that the main phase of extinctions started before the eruptions.[77]
Sea-level falls: 12, of which seven were associated with significant extinctions.[76]
Asteroid impacts: one large impact is associated with a mass extinction, i.e. the Cretaceous–Paleogene extinction event; there have been many smaller impacts but they are not associated with significant extinctions.[78]
The most commonly suggested causes of mass extinctions are listed below.
Flood basalt events occur as pulses of activity punctuated by dormant periods. As a result, they are likely to cause the climate to oscillate between cooling and warming, but with an overall trend towards warming as the carbon dioxide they emit can stay in the atmosphere for hundreds of years.
It is speculated that massive volcanism caused or contributed to the End-Permian, End-Triassic and End-Cretaceous extinctions.[80] The correlation between gigantic volcanic events expressed in the large igneous provinces and mass extinctions was shown for the last 260 Myr.[81][82] Recently such possible correlation was extended for the whole Phanerozoic Eon.[83]
Sea-level falls
These are often clearly marked by worldwide sequences of contemporaneous sediments which show all or part of a transition from sea-bed to tidal zone to beach to dry land – and where there is no evidence that the rocks in the relevant areas were raised by geological processes such as orogeny. Sea-level falls could reduce the continental shelf area (the most productive part of the oceans) sufficiently to cause a marine mass extinction, and could disrupt weather patterns enough to cause extinctions on land. But sea-level falls are very probably the result of other events, such as sustained global cooling or the sinking of the mid-ocean ridges.
A study, published in the journal Nature (online June 15, 2008) established a relationship between the speed of mass extinction events and changes in sea level and sediment.[84] The study suggests changes in ocean environments related to sea level exert a driving influence on rates of extinction, and generally determine the composition of life in the oceans.[85]
Impact events
The impact of a sufficiently large asteroid or comet could have caused food chains to collapse both on land and at sea by producing dust and particulate aerosols and thus inhibiting photosynthesis.[86] Impacts on sulfur-rich rocks could have emitted sulfur oxides precipitating as poisonous acid rain, contributing further to the collapse of food chains. Such impacts could also have caused megatsunamis and/or global forest fires.
Most paleontologists now agree that an asteroid did hit the Earth about 66 Ma ago, but there is an ongoing dispute whether the impact was the sole cause of the Cretaceous–Paleogene extinction event.[87][88]
Global cooling
Sustained and significant global cooling could kill many polar and temperate species and force others to migrate towards the equator; reduce the area available for tropical species; often make the Earth's climate more arid on average, mainly by locking up more of the planet's water in ice and snow. The glaciation cycles of the current ice age are believed to have had only a very mild impact on biodiversity, so the mere existence of a significant cooling is not sufficient on its own to explain a mass extinction.
It has been suggested that global cooling caused or contributed to the End-Ordovician, Permian–Triassic, Late Devonian extinctions, and possibly others. Sustained global cooling is distinguished from the temporary climatic effects of flood basalt events or impacts.
Global warming
This would have the opposite effects: expand the area available for tropical species; kill temperate species or force them to migrate towards the poles; possibly cause severe extinctions of polar species; often make the Earth's climate wetter on average, mainly by melting ice and snow and thus increasing the volume of the water cycle. It might also cause anoxic events in the oceans (see below).
Global warming as a cause of mass extinction is supported by several recent studies.[89]
Clathrates are composites in which a lattice of one substance forms a cage around another. Methane clathrates (in which water molecules are the cage) form on continental shelves. These clathrates are likely to break up rapidly and release the methane if the temperature rises quickly or the pressure on them drops quickly—for example in response to sudden global warming or a sudden drop in sea level or even earthquakes. Methane is a much more powerful greenhouse gas than carbon dioxide, so a methane eruption ("clathrate gun") could cause rapid global warming or make it much more severe if the eruption was itself caused by global warming.
The most likely signature of such a methane eruption would be a sudden decrease in the ratio of carbon-13 to carbon-12 in sediments, since methane clathrates are low in carbon-13; but the change would have to be very large, as other events can also reduce the percentage of carbon-13.[93]
It has been suggested that "clathrate gun" methane eruptions were involved in the end-Permian extinction ("the Great Dying") and in the Paleocene–Eocene Thermal Maximum, which was associated with one of the smaller mass extinctions.
Anoxic events
Anoxic events are situations in which the middle and even the upper layers of the ocean become deficient or totally lacking in oxygen. Their causes are complex and controversial, but all known instances are associated with severe and sustained global warming, mostly caused by sustained massive volcanism.[94]
It has been suggested that anoxic events caused or contributed to the Ordovician–Silurian, late Devonian, Permian–Triassic and Triassic–Jurassic extinctions, as well as a number of lesser extinctions (such as the Ireviken, Mulde, Lau, Toarcian and Cenomanian–Turonian events). On the other hand, there are widespread black shale beds from the mid-Cretaceous which indicate anoxic events but are not associated with mass extinctions.
The bio-availability of essentialtrace elements (in particular selenium) to potentially lethal lows has been shown to coincide with, and likely have contributed to, at least three mass extinction events in the oceans, i.e. at the end of the Ordovician, during the Middle and Late Devonian, and at the end of the Triassic. During periods of low oxygen concentrations very soluble selenate (Se6+) is converted into much less soluble selenide (Se2+), elemental Se and organo-selenium complexes. Bio-availability of selenium during these extinction events dropped to about 1% of the current oceanic concentration, a level that has been proven lethal to many extant organisms.[95]
Oceanic overturn is a disruption of thermo-haline circulation which lets surface water (which is more saline than deep water because of evaporation) sink straight down, bringing anoxic deep water to the surface and therefore killing most of the oxygen-breathing organisms which inhabit the surface and middle depths. It may occur either at the beginning or the end of a glaciation, although an overturn at the start of a glaciation is more dangerous because the preceding warm period will have created a larger volume of anoxic water.[99]
Unlike other oceanic catastrophes such as regressions (sea-level falls) and anoxic events, overturns do not leave easily identified "signatures" in rocks and are theoretical consequences of researchers' conclusions about other climatic and marine events.
It has been suggested that oceanic overturn caused or contributed to the late Devonian and Permian–Triassic extinctions.
A nearby nova, supernova or gamma ray burst
A nearby gamma-ray burst (less than 6000 light-years away) would be powerful enough to destroy the Earth's ozone layer, leaving organisms vulnerable to ultraviolet radiation from the Sun.[100] Gamma ray bursts are fairly rare, occurring only a few times in a given galaxy per million years.[101]
It has been suggested that a supernova or gamma ray burst caused the End-Ordovician extinction.[102]
Geomagnetic reversal
One theory is that periods of increased geomagnetic reversals will weaken Earth's magnetic field long enough to expose the atmosphere to the solar winds, causing oxygen ions to escape the atmosphere in a rate increased by 3–4 orders, resulting in a disastrous decrease in oxygen.[103]
Plate tectonics
Movement of the continents into some configurations can cause or contribute to extinctions in several ways: by initiating or ending ice ages; by changing ocean and wind currents and thus altering climate; by opening seaways or land bridges which expose previously isolated species to competition for which they are poorly adapted (for example, the extinction of most of South America's native ungulates and all of its large metatherians after the creation of a land bridge between North and South America). Occasionally continental drift creates a super-continent which includes the vast majority of Earth's land area, which in addition to the effects listed above is likely to reduce the total area of continental shelf (the most species-rich part of the ocean) and produce a vast, arid continental interior which may have extreme seasonal variations.
Another theory is that the creation of the super-continent Pangaea contributed to the End-Permian mass extinction. Pangaea was almost fully formed at the transition from mid-Permian to late-Permian, and the "Marine genus diversity" diagram at the top of this article shows a level of extinction starting at that time which might have qualified for inclusion in the "Big Five" if it were not overshadowed by the "Great Dying" at the end of the Permian.[104]
Other hypotheses
Many other hypotheses have been proposed, such as the spread of a new disease, or simple out-competition following an especially successful biological innovation. But all have been rejected, usually for one of the following reasons: they require events or processes for which there is no evidence; they assume mechanisms which are contrary to the available evidence; they are based on other theories which have been rejected or superseded.
Scientists have been concerned that human activities could cause more plants and animals to become extinct than any point in the past. Along with human-made changes in climate (see above), some of these extinctions could be caused by overhunting, overfishing, invasive species, or habitat loss. A study published in May 2017 in Proceedings of the National Academy of Sciences argued that a “biological annihilation” akin to a sixth mass extinction event is underway as a result of anthropogenic causes, such as over-population and over-consumption. The study suggested that as much as 50% of the number of animal individuals that once lived on Earth were already extinct, threatening the basis for human existence too.[105][25]
The eventual warming and expanding of the Sun, combined with the eventual decline of atmospheric carbon dioxide could actually cause an even greater mass extinction, having the potential to wipe out even microbes (in other words, the Earth is completely sterilized), where rising global temperatures caused by the expanding Sun will gradually increase the rate of weathering, which in turn removes more and more carbon dioxide from the atmosphere. When carbon dioxide levels get too low (perhaps at 50 ppm), all plant life will die out, although simpler plants like grasses and mosses can survive much longer, until CO2 levels drop to 10 ppm.[106][107]
With all photosynthetic organisms gone, atmospheric oxygen can no longer be replenished, and is eventually removed by chemical reactions in the atmosphere, perhaps from volcanic eruptions. Eventually the loss of oxygen will cause all remaining aerobic life to die out via asphyxiation, leaving behind only simple anaerobic prokaryotes. When the Sun becomes 10% brighter in about a billion years,[106] Earth will suffer a moist greenhouse effect resulting in its oceans boiling away, while the Earth's liquid outer core cools due to the inner core's expansion and causes the Earth's magnetic field to shut down. In the absence of a magnetic field, charged particles from the Sun will deplete the atmosphere and further increase the Earth's temperature to an average of ~420 K (147 °C, 296 °F) in 2.8 billion years, causing the last remaining life on Earth to die out. This is the most extreme instance of a climate-caused extinction event. Since this will only happen late in the Sun's life, such will cause the final mass extinction in Earth's history (albeit a very long extinction event).[106][107]
Effects and recovery
The impact of mass extinction events varied widely. After a major extinction event, usually only weedy species survive due to their ability to live in diverse habitats.[108] Later, species diversify and occupy empty niches. Generally, biodiversity recovers 5 to 10 million years after the extinction event. In the most severe mass extinctions it may take 15 to 30 million years.[108]
The worst event, the Permian–Triassic extinction, devastated life on earth, killing over 90% of species. Life seemed to recover quickly after the P-T extinction, but this was mostly in the form of disaster taxa, such as the hardy Lystrosaurus. The most recent research indicates that the specialized animals that formed complex ecosystems, with high biodiversity, complex food webs and a variety of niches, took much longer to recover. It is thought that this long recovery was due to successive waves of extinction which inhibited recovery, as well as prolonged environmental stress which continued into the Early Triassic. Recent research indicates that recovery did not begin until the start of the mid-Triassic, 4M to 6M years after the extinction;[109] and some writers estimate that the recovery was not complete until 30M years after the P-T extinction, i.e. in the late Triassic.[110] Subsequent to the P-T extinction, there was an increase in provincialization, with species occupying smaller ranges – perhaps removing incumbents from niches and setting the stage for an eventual rediversification.[111]
The effects of mass extinctions on plants are somewhat harder to quantify, given the biases inherent in the plant fossil record. Some mass extinctions (such as the end-Permian) were equally catastrophic for plants, whereas others, such as the end-Devonian, did not affect the flora.[112]
Nota
^Dissolved oxygen became more widespread and penetrated to greater depths; the development of life on land reduced the run-off of nutrients and hence the risk of eutrophication and anoxic events; and marine ecosystems became more diversified so that food chains were less likely to be disrupted.
^"Gould, S. J. (2004). The Evolution of Life on Earth, SCIENTIFIC AMERICAN, INC". Missing or empty |url= (bantuan); |access-date= requires |url= (bantuan)
^Macleod, N.; Rawson, P. F.; Forey, P. L.; Banner, F. T.; Boudagher-Fadel, M. K.; Bown, P. R.; Burnett, J. A.; Chambers, P.; Culver, S.; Evans, S. E.; Jeffery, C.; Kaminski, M. A.; Lord, A. R.; Milner, A. C.; Milner, A. R.; Morris, N.; Owen, E.; Rosen, B. R.; Smith, A. B.; Taylor, P. D.; Urquhart, E.; Young, J. R. (April 1997). "The Cretaceous-Tertiary biotic transition". Journal of the Geological Society. 154 (2): 265–292. Bibcode:1997JGSoc.154..265M. doi:10.1144/gsjgs.154.2.0265.
^McGhee, G. R.; Sheehan, P. M.; Bottjer, D. J.; Droser, M. L. (2011). "Ecological ranking of Phanerozoic biodiversity crises: The Serpukhovian (early Carboniferous) crisis had a greater ecological impact than the end-Ordovician". Geology. 40 (2): 147–150. Bibcode:2012Geo....40..147M. doi:10.1130/G32679.1.
^Sole, R.V., and Newman, M., 2002. "Extinctions and Biodiversity in the Fossil Record – Volume Two, The Earth system: biological and ecological dimensions of global environment change" pp. 297–391, Encyclopedia of Global Environmental Change John Wilely & Sons.
^Smith, Andrew B.; McGowan, Alistair J. (2007). "The shape of the Phanerozoic marine palaeodiversity curve: How much can be predicted from the sedimentary rock record of Western Europe?". Palaeontology. 50 (4): 765–774. doi:10.1111/j.1475-4983.2007.00693.x.
^Ripple WJ, Wolf C, Newsome TM, Galetti M, Alamgir M, Crist E, Mahmoud MI, Laurance WF (13 November 2017). "World Scientists' Warning to Humanity: A Second Notice". BioScience. doi:10.1093/biosci/bix125. Moreover, we have unleashed a mass extinction event, the sixth in roughly 540 million years, wherein many current life forms could be annihilated or at least committed to extinction by the end of this century.
^Vignieri, S. (25 July 2014). "Vanishing fauna (Special issue)". Science. 345 (6195): 392–412. doi:10.1126/science.345.6195.392. Although some debate persists, most of the evidence suggests that humans were responsible for extinction of this Pleistocene fauna, and we continue to drive animal extinctions today through the destruction of wild lands, consumption of animals as a resource or a luxury, and persecution of species we see as threats or competitors.
^Keller G (2012). "The Cretaceous–Tertiary Mass Extinction, Chicxulub Impact, and Deccan Volcanism. Earth and Life". Dalam Talent JA (penyunting). Earth and Life: Global Biodiversity, Extinction Intervals and Biogeographic Perturbations Through Time. Springer. m/s. 759–793. ISBN978-90-481-3427-4.
^József Pálfy; Paul Smith. "Synchrony between Early Jurassic extinction, oceanic anoxic event, and the Karoo-Ferrar flood basalt volcanism". Missing or empty |url= (bantuan)
^Blackburn, Terrence J.; Olsen, Paul E.; Bowring, Samuel A.; McLean, Noah M.; Kent, Dennis V; Puffer, John; McHone, Greg; Rasbury, Troy; Et-Touhami7, Mohammed (2013). "Zircon U-Pb Geochronology Links the End-Triassic Extinction with the Central Atlantic Magmatic Province". Science. 340 (6135): 941–945. Bibcode:2013Sci...340..941B. doi:10.1126/science.1234204. PMID23519213.CS1 maint: ref duplicates default (link)
^Dal Corso, J.; Mietto, P.; Newton, R.J.; Pancost, R.D.; Preto, N.; Roghi, G.; Wignall, P.B. (2012). "Discovery of a major negative δ13C spike in the Carnian (Late Triassic) linked to the eruption of Wrangellia flood basalts". Geology. 40 (1): 79–82. Bibcode:2012Geo....40...79D. doi:10.1130/g32473.1.
^J, Ricci et al, (2013). "New 40Ar/39Ar and K–Ar ages of the Viluy traps (Eastern Siberia): Further evidence for a relationship with the Frasnian–Famennian mass extinction". Palaeogeography, Palaeoclimatology, Palaeoecology. 386: 531–540. doi:10.1016/j.palaeo.2013.06.020.CS1 maint: extra punctuation (link)
^Jeppsson, L. (1998). "Silurian oceanic events: summary of general characteristics". Silurian Cycles: Linkages of Dynamic Stratigraphy with Atmospheric, Oceanic and Tectonic Changes. James Hall Centennial Volume. New York State Museum Bulletin. 491. m/s. 239–257. Unknown parameter |editors= ignored (bantuan)
^Jeppsson, L.; Calner, M. (2007). "The Silurian Mulde Event and a scenario for secundo—secundo events". Earth and Environmental Science Transactions of the Royal Society of Edinburgh. 93 (2): 135–154. doi:10.1017/s0263593300000377.
^Jeppsson, L (1997). "The anatomy of the Mid-Early Silurian Ireviken Event and a scenario for P-S events". Dalam Brett, C.E.; Baird, G.C. (penyunting). Paleontological Events: Stratigraphic, Ecological, and Evolutionary Implications. New York: Columbia University Press. m/s. 451–492.
^Melott, A.L.; Bambach, Richard K.; Petersen, Kenni D.; McArthur, John M.; dll. (2012). "A ~60 Myr periodicity is common to marine-87Sr/86Sr, fossil biodiversity, and large-scale sedimentation: what does the periodicity reflect?". Journal of Geology. 120 (2): 217–226. arXiv:1206.1804. Bibcode:2012JG....120..217M. doi:10.1086/663877.
^ abArens, N. C.; West, I. D. (2008). "Press-pulse: a general theory of mass extinction?". Paleobiology. 34 (4): 456–471. doi:10.1666/07034.1.
^ abcWang, S. C.; Bush, A. M. (2008). "Adjusting global extinction rates to account for taxonomic susceptibility". Paleobiology. 34 (4): 434–455. doi:10.1666/07060.1.
^Budd, G. E. (2003). "The Cambrian Fossil Record and the Origin of the Phyla". Integrative and Comparative Biology. 43 (1): 157–165. doi:10.1093/icb/43.1.157. PMID21680420.
^Martin, R.E. (1995). "Cyclic and secular variation in microfossil biomineralization: clues to the biogeochemical evolution of Phanerozoic oceans". Global and Planetary Change. 11 (1): 1–23. Bibcode:1995GPC....11....1M. doi:10.1016/0921-8181(94)00011-2.
^Martin, R.E. (1996). "Secular increase in nutrient levels through the Phanerozoic: Implications for productivity, biomass, and diversity of the marine biosphere". PALAIOS. 11 (3): 209–219. doi:10.2307/3515230. JSTOR3515230.
^Arens, N.C. and West, I.D. (2006). "Press/Pulse: A General Theory of Mass Extinction?" 'GSA Conference paper' AbstractDiarkibkan 2017-01-18 di Wayback Machine
^Courtillot, V., Jaeger, J-J., Yang, Z., Féraud, G., Hofmann, C. (1996). "The influence of continental flood basalts on mass extinctions: where do we stand?" in Ryder, G., Fastovsky, D., and Gartner, S, eds. "The Cretaceous-Tertiary event and other catastrophes in earth history". The Geological Society of America, Special Paper 307, 513–525.
^Hallam, A. (1992). Phanerozoic sea-level changes. New York: Columbia University Press. ISBN0231074247.
^Grieve, R.; Rupert, J.; Smith, J.; Therriault, A. (1996). "The record of terrestrial impact cratering". GSA Today. 5: 193–195.
^ abSome of the extinctions associated with flood basalts and sea-level falls were significantly smaller than the "major" extinctions, but still much greater than the background extinction level.
^Brannen, Peter (2017). The Ends of the World: Volcanic Apocalypses, Lethal Oceans, and Our Quest to Understand Earth's Past Mass Extinctions. Harper Collins. m/s. 336. ISBN9780062364807.
^Courtillot, V. (1994). "Mass extinctions in the last 300 million years: one impact and seven flood basalts?". Israel Journal of Earth Sciences. 43: 255–266.
^Courtillot, V. E., Renne, P. R., 2003. On the ages of flood basalt events. Comptes Rendus Geosciences 335 (1), 113–140.
^Long, J.; Large, R.R.; Lee, M.S.Y.; Benton, M. J.; Danyushevsky, L.V.; Chiappe, L.M.; Halpin, J.A.; Cantrill, D. & Lottermoser, B. (2015). "Severe Selenium depletion in the Phanerozoic oceans as a factor in three global mass extinction events". Gondwana Research. 36: 209. Bibcode:2016GondR..36..209L. doi:10.1016/j.gr.2015.10.001.