Skaičiaus pi žymėjimas graikiška raide pi kilęs iš graikiško žodžio περιφέρεια, reiškiančio periferiją ir περίμετρον - apskritimo perimetras.[2] Pirmą kartą tokį žymėjimą panaudojo William Oughtred (1574-1660), o pasiūlė naudoti William Jones (1675-1749).[3] Labiausiai išpopuliarėjo pasirodžius Leonardo Oilerio veikalui „Introducción al cálculo infinitesimal“, 1748 m.
Savybės
Pi yra iracionalusis skaičius, tai yra negali būti užrašytas kaip dviejų sveikųjų skaičių santykis. Tai 1761 metais įrodė šveicarų matematikas Johanas Heinrichas Lambertas (Johann Heinrich Lambert). 1882 metais įrodyta, kad skaičius yra transcendentinis, tai yra neegzistuoja toks daugianaris su racionaliais koeficientais, kurio šaknis būtų π.
Tuo pačiu neįmanoma išreikšti π reikšmės naudojant baigtinį kiekį sveikų ir racionalių skaičių bei jų šaknų. Tai reiškia, kad neįmanoma naudojant liniuotę ir skriestuvą nubrėžti kvadrato, kurio plotas būtų lygus duoto apskritimo plotui. Toks uždavinys vadinamas skritulio kvadratūra.
Formulės su π
Geometrija
Pi naudojama daugelyje geometrinių formulių, susijusių su apskritimais ir sferomis.
Tai dažniau pasitaikantis užrašymas, bet formalesnis užrašymas yra:
Valio sandauga:
Atviri klausimai
Svarbiausias su π susijęs neatsakytas klausimas – ar tai normalusis skaičius, t. y. ar egzistuoja kokia nors nuspėjama skaitmenų seka ar kiekvienas tolesnis skaitmuo visai „atsitiktinis“. Tai galiotų ne tik dešimtainei sistemai. Dabartinės žinios yra pakankamai mažos – net nežinoma, kuris iš skaitmenų pasitaiko be galo dažnai.
Taip pat nežinoma, ar π ir e yra algebriškai nepriklausomos konstantos, t. y. ar egzistuoja polinominis ryšys tarp π ir e su racionaliaisiais koeficientais.
π prigimtis
Neeuklidinėje geometrijoje trikampio kampų suma gali būti didesnė ar mažesnė už π radianų, taip pat apskritimo ilgio ir spindulio santykis gali būti nelygus π. Tačiau tai nekeičia π apibrėžimo, tik formules, kuriose naudojama π. Taigi, π reikšmei neturi įtakos visatos forma, ji nėra fizikinė, bet matematinė konstanta, apibrėžta nepriklausomai nuo bet kokių fizikinių matavimų. Ji naudojama ir fizikoje tik todėl, kad yra patogi daugumoje modelių.
π kultūroje
„Pi“ – amerikiečių psichologinis trileris (1998 m.).
↑Hoffmann, Manfred (2007). Didysis matematikos žinynas formulės, taisyklės, teoremos, uždaviniai ir jų sprendimai. Kaunas. p. 221. ISBN5-430-04814-3. OCLC1185091387.{{cite book}}: CS1 priežiūra: location missing publisher (link)
↑G L Cohen and A G Shannon, John Ward's method for the calculation of pi, Historia Mathematica 8 (2) (1981), 133-144.
↑New Introduction to Mathematics, William Jones, 1706, London