Jonas Byra
|
Read other articles:
American politician (1940–2022) Emmett C. Burns Jr.Burns in 2007Member of the Maryland House of Delegatesfrom the 10th districtIn officeJanuary 11, 1995 – January 14, 2015Preceded byBob EhrlichWade KachEllen SauerbreySucceeded byBenjamin Brooks Personal detailsBornAugust 26, 1940Jackson, Mississippi, U.S.DiedMarch 17, 2022(2022-03-17) (aged 81)Lochearn, MarylandPolitical partyDemocraticOccupationMinister Emmett C. Burns Jr. (August 26, 1940 – March 17, 2022) wa...
Untuk tempat lain yang bernama sama, lihat Văleni. Vălenii de MunteKotaMuseum memorial Nicolae Iorga di Vălenii de Munte Lambang kebesaranLetak Vălenii de MunteNegara RumaniaProvinsiPrahovaStatusKotaPemerintahan • Wali kotaMircea Niţu (Partidul Social Democrat)Luas • Total21,59 km2 (834 sq mi)Populasi (2002) • Total13.309Zona waktuUTC+2 (EET) • Musim panas (DST)UTC+3 (EEST)Situs webhttp://www.valeniidemunte.com.ro/ ...
Tonglu 桐庐县TungluCountyPemandangan County Tonglu dari udaraKoordinat: 29°48′N 119°50′E / 29.800°N 119.833°E / 29.800; 119.833Koordinat: 29°48′N 119°50′E / 29.800°N 119.833°E / 29.800; 119.833NegaraRepublik Rakyat TiongkokProvinsiZhejiangKota subprovinsiHangzhouLuas • Total1.852 km2 (715 sq mi)Populasi • Total400.000 • Kepadatan220/km2 (560/sq mi)Zona waktuUTC+8 (Waktu S...
Часть серии статей о Холокосте Идеология и политика Расовая гигиена · Расовый антисемитизм · Нацистская расовая политика · Нюрнбергские расовые законы Шоа Лагеря смерти Белжец · Дахау · Майданек · Малый Тростенец · Маутхаузен ·&...
Свадебные песни славян — народные песни, исполняемые в разные моменты традиционного свадебного празднества у славянских народов. Музыкально-поэтический язык песен свадебного обряда отличает устойчивость, закреплённая традицией обрядовой практики, сложившейся в к�...
Ketepeng kecil Senna tora TaksonomiDivisiTracheophytaSubdivisiSpermatophytesKladAngiospermaeKladmesangiospermsKladeudicotsKladcore eudicotsKladSuperrosidaeKladrosidsKladfabidsOrdoFabalesFamiliFabaceaeSubfamiliCaesalpinioideaeTribusCassieaeGenusSennaSpesiesSenna tora Roxb., 1832 Tata namaBasionimCassia tora (en) Sinonim taksonNumerous, see textEx taxon author (en)L. lbs Senna tora (awalnya dijelaskan oleh Linnaeus sebagai Cassia tora ) adalah spesies tumbuhan dalam famili Fabaceae dan subfamil...
Halaman ini berisi artikel tentang stasiun radio yang dimiliki dan dioperasikan oleh BBC. Untuk stasiun radio digital BBC, lihat BBC Radio 4 Extra. Untuk stasiun lainnya yang dikenal sebagai 'Radio 4', lihat Radio 4. BBC Radio 4KotaLondonWilayah siarBritania RayaSloganIntelligent speech, the most insightful journalism, the wittiest comedy, the most fascinating features and the most compelling drama and readings anywhere in UK radioFrekuensiFM: 92.5–96.1 MHz, 103.5–104.9 MHzLW: 198...
First Battle of KitshangaPart of M23 offensiveThe MONUSCO base in Kitshanga, just after the 2009 battle for the city.DateJanuary 24–26, 2023LocationKitchanga and surrounding villages, North Kivu, Democratic Republic of the CongoResult M23 victoryBelligerents FARDC NDC-RAPCLS-KambuziSelf-defense groups M23 Rwandan Defence Forces (per DRC)Casualties and losses Unknown Unknown Many killed20,000+ displaced[1] vteKivu conflict Lemera massacre Kasika massacre Makobola massacre Makombo mas...
Kisaburō AndōLahir10 Agustus, 1874Prefektur Hyōgo, JepangMeninggal10 Mei 1954(1954-05-10) (umur 80)PengabdianKekaisaran JepangDinas/cabang Angkatan Darar Kekaisaran JepangLama dinas1899–1939PangkatLetnan JenderalPekerjaan lainKementerian Dalam Negeri Jepang Ini adalah nama Jepang, nama keluarganya adalah Andō . Kisaburō Andō (安藤紀三郎code: ja is deprecated , Andō Kisaburō) (11 Februari 1874 – 10 Mei 1954) adalah seorang Letnan Jenderal di Angkat...
Bettiola Heloise FortsonBiographieNaissance 29 décembre 1890HopkinsvilleDécès 13 avril 1917 (à 26 ans)ChicagoNationalité américaineActivités Écrivaine, poétesse, suffragettemodifier - modifier le code - modifier Wikidata Bettiola Héloïse Fortson est une poétesse, essayiste, chapelière, militante et suffragette afro-américaine née le 29 décembre 1890 à Hopkinsville et morte le 13 avril 1917 à Chicago. Elle est l'une des premières Afro-Américaines du Midwest des États-...
Рыболовный ярус в собранном виде Я́русный лов — метод промышленного рыболовства, при котором для лова рыбы используются крючки с наживкой, прикреплённые к крючковому орудию лова — пелагическому или донному ярусу. Таким способом чаще всего ловят меч-рыбу, тунца, па...
Berching Lambang kebesaranLetak Berching di Neumarkt in der Oberpfalz NegaraJermanNegara bagianBayernWilayahOberpfalzKreisNeumarkt in der OberpfalzSubdivisions43 OrtsteilePemerintahan • MayorRudolf Eineder (CSU)Luas • Total131,18 km2 (5,065 sq mi)Ketinggian385 m (1,263 ft)Populasi (2013-12-31)[1] • Total8.472 • Kepadatan0,65/km2 (1,7/sq mi)Zona waktuWET/WMPET (UTC+1/+2)Kode pos92334Kode area telepon0846...
American private foundation established by Cari Tuna and Dustin Moskovitz Good VenturesFounded2011; 13 years ago (2011)FounderCari TunaDustin MoskovitzTypePrivate foundationTax ID no. 45-2757586[1]Key peopleCari TunaDustin MoskovitzRevenue (2015) $177,849,222Websitegoodventures.org Good Ventures is a private foundation and philanthropic organization in San Francisco, and the fifth largest foundation in Silicon Valley.[2] It was co-founded by Cari Tuna, a form...
Questa voce sull'argomento jazz è solo un abbozzo. Contribuisci a migliorarla secondo le convenzioni di Wikipedia. Segui i suggerimenti del progetto di riferimento. Il JazzFest Berlin (conosciuto anche come Berlin Jazz Festival) è un festival jazz che si svolge annualmente a Berlino. Fondato nel 1964 dalla Berliner Festspiele, originariamente fu chiamato Berliner Jazztage e si svolgeva a Berlino Ovest. È considerato uno dei festival jazz più importanti del mondo. Voci correlate Fest...
この項目には、一部のコンピュータや閲覧ソフトで表示できない文字が含まれています(詳細)。 数字の大字(だいじ)は、漢数字の一種。通常用いる単純な字形の漢数字(小字)の代わりに同じ音の別の漢字を用いるものである。 概要 壱万円日本銀行券(「壱」が大字) 弐千円日本銀行券(「弐」が大字) 漢数字には「一」「二」「三」と続く小字と、「壱」「�...
This page is an archive of past discussions. Do not edit the contents of this page. If you wish to start a new discussion or revive an old one, please do so on the current talk page. Archives 2023;Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2022;Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2021;Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2020;Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2019;Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2018;Jan Feb Mar Apr May Jun Jul Aug Sep...
Il genocidio dei Greci del Ponto[1][2][3] è un fatto accaduto nella odierna Turchia, in territorio all'epoca appartenente all'Impero Ottomano. Vittime furono Greci del Ponto durante e dopo la prima guerra mondiale, tra 1914 e 1923.Australia: targa commemorativa in ricordo del genocidio greco Un manifesto di raccolta fondi per il comitato americano per il soccorso in Armenia, Grecia, Siria e Persia in cui si promette che i bisognosi nel Vicino Oriente non periranno. In...
American basketball player This article includes a list of references, related reading, or external links, but its sources remain unclear because it lacks inline citations. Please help improve this article by introducing more precise citations. (November 2021) (Learn how and when to remove this message) Phil SmithSmith in 1975Personal informationBorn(1952-04-22)April 22, 1952San Francisco, California, U.S.DiedJuly 29, 2002(2002-07-29) (aged 50)Escondido, California, U.S.Listed height6...
Raiffeisen Super League2013-2014 Généralités Sport football Organisateur(s) Association suisse de football Édition 117e Lieu(x) Suisse Date Du 13 juillet 2013au 18 mai 2014 Participants 10 équipes Matchs joués 180 Affluence 1 938 985 spect. (moy: 10 772) Site web officiel Site officiel de la Super League Hiérarchie Hiérarchie 1er niveau Niveau inférieur Challenge League 2013-14 Palmarès Tenant du titre FC Bâle Promu(s) en début de saison FC Aarau Vainqueur FC Bâle Buts 520 ...
Graph of space and time in special relativity The world line (yellow path) of a photon, which is at location x = 0 at time ct = 0. Part of a series onSpacetime Special relativity General relativity Spacetime concepts Spacetime manifold Equivalence principle Lorentz transformations Minkowski space General relativity Introduction to general relativity Mathematics of general relativity Einstein field equations Classical gravity Introduction to gravitation Newton's law of universal gravitation Re...