Unitates Planckianae

Unitates Planckianae
Longitudo1.616255 × 10−35 m
Massa2.176434 × 10−8 kg
Tempus5.391247 × 10−44 s
Onus electricum1.875546 × 10−18 C
Temperatura1.416784 × 1032 K

Unitates Planckianae in cosmologia physica et in physica particularum elementarium sunt systema unitatum naturalium(en)(d) a Maximiliano Planck physico Germanico anno 1899 propositum[1] (undevicensimo anno ab unitatibus Stoneyanis creatis), sic excogitatum ut ex quinque tantum quantitatibus constantibus primariis dependeret: c, G, ħ, kB et ke.[2]

... die Möglichkeit gegeben ist, Einheiten für Länge, Masse, Zeit und Temperatur aufzustellen, welche, unabhängig von speciellen Körpern oder Substanzen, ihre Bedeutung für alle Zeiten und für alle, auch ausserirdische und aussermenschliche Culturen nothwendig behalten und welche daher als »natürliche Maasseinheiten« bezeichnet werden können.

... possibile est quasdam unitates longitudinis, massae, temporis temperaturaeque sic definire ut e specialibus corporibus vel materie non dependeant, ut semper et per omnes civitates, extraterrestribus vel haud humanis inclusis, significationes suas servent, ut igitur "unitates naturales mensurae" appellari possint.

Maximilianus Planck, "Über irreversible Strahlungsvorgänge"[1]

Unitates

Ad systema mensurae Planckianum definiendum, hae quantitates constantes adhibentur:

Unitates Planckianae emergunt numerum unius parti numerali talium constantium imponendo et systema quinque aequationum linearium solvendo.

Nomen Dimensio Aequatio Mensura ad SI versa
Longitudo Planckiana longitudo (L) 1.616255 × 10−35 m[3]
Massa Planckiana massa (M) 2.176434 × 10−8 kg[4]
Tempus Planckianum tempus (T) 5.391247 × 10−44 s[5]
Onus electricum Planckianum onus electricum (Q) 1.875545956 × 10−18 C[6]
Temperatura Planckiana temperatura (Θ) 1.416784 × 1032 K[7]

Forma originalis systematis a Maximiliano Planck proposita constantem Planckianam (h) ad vicem constantis Planckianae minutae (ħ) adhibebat et constante Coulombiana carebat.[1] Idcirco unitates originales erant factoris maiores hodiernis unitatibus et sine ulla unitate oneris electrici.

Constantes quae systema Planckianum definiunt, cum per ipsas unitates Planckianas exprimantur, partem numeralem habent unius:

Proportio inter unitates Planckianae et unitates Stoneyanas est .[8] Idcirco:

Ad vicem constantis gravitatis (G) et constans Coulombiana (ke), nonnulli auctores, rationem Oliverii Heaviside sequentes, praeferunt 4𝜋G et 4𝜋ke uni aequare (c = ħ = 4𝜋G = 4𝜋ke = kB = 1).[9] Talis emendatio, “rationalizatio” appellata, aliquando in physica altarum energiarum adhibetur[10] et hoc modo unitates Planckianas transformat:

Notae

  1. 1.0 1.1 1.2 Planck, Maximilianus (1899). "Über irreversible Strahlungsvorgänge". Sitzungsberichte der Königlich Preußischen Akademie der Wissenschaften zu Berlin 5: 440–480 
  2. Forma originalis systematis a Maximiliano Planck proposita constantem Planckianam (h) ad vicem constantis Planckianae minutae (ħ) adhibebat et constante Coulombiana carebat. Vide § Unitates.
  3. "2018 CODATA Value: Planck length". The NIST Reference on Constants, Units, and Uncertainty. NIST. 20 Maii 2019 
  4. "2018 CODATA Value: Planck mass". The NIST Reference on Constants, Units, and Uncertainty. NIST. 20 Maii 2019 
  5. "2018 CODATA Value: Planck time". The NIST Reference on Constants, Units, and Uncertainty. NIST. 20 Maii 2019 
  6. Pars numeralis e qP = eα ducitur – "2018 CODATA Value: elementary charge". The NIST Reference on Constants, Units, and Uncertainty. NIST. 20 Maii 2019 
  7. "2018 CODATA Value: Planck temperature". The NIST Reference on Constants, Units, and Uncertainty. NIST. 20 Maii 2019 
  8. Duff, M. J.; Okun, L. B.; Veneziano, G. (3 Martii 2002), "Trialogue on the number of fundamental constants", Journal of High Energy Physics 2002 (3): 3, arXiv:physics/0110060 
  9. Sorkin, Raphaël (1983). "Kaluza-Klein Monopole". Phys. Rev. Lett. 51 (2): 87–90 
  10. Rañada, Antonius F. (31 Octobris 1995). "A Model of Topological Quantization of the Electromagnetic Field". In M. Ferrero. Fundamental Problems in Quantum Physics. Springer. p. 271. ISBN 9780792336709 

Nexus interni