쿠런트 준대수

미분기하학에서 쿠런트 준대수(Courant準代數, 영어: Courant algebroid)는 리 준대수이차 리 대수의 개념의 공통적인 일반화이다.[1]

정의

반대칭이 아닌 괄호를 통한 정의

쿠런트 준대수는 다음과 같은 데이터로 주어진다.

  • 매끄러운 다양체
  • 매끄러운 벡터 다발
  • 벡터 다발 사상 , . 이를 (영어: anchor)이라고 한다. 이를 위의 1차 미분 연산자로 간주하자.
  • 위의 올별 비퇴화 대칭 쌍선형 형식
  • 단면 위의 쌍선형 형식 , .

이는 다음 공리들을 만족시켜야 한다.

반대칭인 괄호를 통한 정의

쿠런트 준대수는 다음과 같은 데이터로 주어진다.

  • 매끄러운 다양체
  • 매끄러운 벡터 다발
  • 1차 미분 연산
  • 위의 올별 비퇴화 대칭 쌍선형 형식
  • 위의 올별 반대칭 쌍선형 형식

이는 다음 공리들을 만족시켜야 한다.

이 두 정의는 서로 동치이며, 그 사이의 관계는 다음과 같다.

디랙 구조

매끄러운 다양체 위의 차원 쿠런트 준대수 위의 내적 의 부호수가 이라고 하자. 그렇다면, 디랙 구조 는 다음 조건을 만족시키는 부분 벡터 다발이다.

접다발과 쌍대접다발의 직합

매끄러운 다양체 닫힌 3차 미분 형식

가 주어졌다고 하자. 그렇다면,

위에

와 같은 괄호를 주자. 여기서

그렇다면, 는 쿠런트 준대수의 구조를 이룬다.[2] 여기서

  • 은 사영 사상이다.
  • 은 단순히 이다.

이차 리 대수

한원소 공간 위의 쿠런트 준대수의 개념은 이차 리 대수의 개념과 동치이다.

역사

류장쥐(중국어 간체자: 刘张炬, 정체자: 劉張炬, 병음: Liú Zhāngjù, 한자음: 유장거) · 앨런 와인스틴(영어: Alan Weinstein) · 쉬핑(중국어: 徐平, 병음: Xú Píng, 한자음: 서평)이 1997년에 도입하였다.[3] 이 개념의 이름은 미국의 수학자 시어도어 제임스 쿠런트(영어: Theodore James Courant)의 이름을 땄다.

각주

  1. Roytenberg, Dmitry (1999). 《Courant algebroids, derived brackets, and even symplectic supermanifolds》 (영어). 박사 학위 논문. 캘리포니아 대학교 버클리. arXiv:math/9910078. 
  2. Ševera, Pavol (2000). “Letters to A. Weinstein about Courant algebroids” (영어). arXiv:1707.00265. Bibcode:2017arXiv170700265S. 
  3. Liu, Zhang-Ju; Weinstein, Alan; Xu, Ping (1997). “Manin triples for Lie bialgebroids”. 《Journal of Differential Geometry》 (영어) 45: 647–574. arXiv:dg-ga/9508013. Bibcode:1995dg.ga.....8013L. 

외부 링크

Read other articles:

هوباردتون     الإحداثيات 43°43′23″N 73°11′15″W / 43.723055555556°N 73.1875°W / 43.723055555556; -73.1875  [1] تقسيم إداري  البلد الولايات المتحدة[2]  التقسيم الأعلى مقاطعة روتلاند  خصائص جغرافية  المساحة 28.9 ميل مربع  ارتفاع 141 متر  عدد السكان  عدد السكان 735 (1 �...

 

This article has multiple issues. Please help improve it or discuss these issues on the talk page. (Learn how and when to remove these template messages) This article may require cleanup to meet Wikipedia's quality standards. The specific problem is: This article needs in-line citations, transformation of what are essentially bullets into actual prose, and a lead section that defines its focus and time frame with a link to Empire of Japan. Please help improve this article if you can. (May 20...

 

Aldo Busi in piazza dei Cinquecento durante il Roma Pride 2008 Aldo Busi (Montichiari, 25 febbraio 1948) è uno scrittore, traduttore e opinionista italiano. Nel 1984, al suo esordio letterario, vince il Premio Mondello Opera prima con Seminario sulla gioventù[1] nel 2002 vince il premio Frignano per il romanzo breve La signorina Gentilin dell'omonima cartoleria[2] e nel 2013 vince il premio letterario Boccaccio per la traduzione in italiano contemporaneo del Decameron di Gio...

وزارة الإعلام والشتات تفاصيل الوكالة الحكومية البلد إسرائيل  تأسست 1967  الإدارة منصب المدير وزارة الإعلام والشتات  [لغات أخرى]‏  موقع الويب الموقع الرسمي  تعديل مصدري - تعديل   وزارة الإعلام والشتات (بالعبرية: משרד ההסברה והתפוצות) هي وزارة في الحكومة ال...

 

American baseball player (1940-2013) Baseball player Bob ChanceFirst baseman / Right fielderBorn: (1940-09-10)September 10, 1940Statesboro, Georgia, U.S.Died: October 3, 2013(2013-10-03) (aged 73)Charleston, West Virginia, U.S.Batted: LeftThrew: RightMLB debutSeptember 4, 1963, for the Cleveland IndiansLast MLB appearanceApril 20, 1969, for the California AngelsMLB statisticsBatting average.261Home runs24Runs batted in112 Teams Cleveland Indians (1963–1964...

 

Americans of Gujarati birth or descent Gujarati Americansગુજરાતી અમેરિકનોThe language spread of Gujarati in the United States according to U. S. Census 2000Total population1,330,000(2015)[1] 350,000 (2015)[1] - 434,264 (2017)[2][3] people speak the language in the USARegions with significant populationsNew Jersey, New York City, San Francisco Bay Area, Los Angeles, Washington, D.C., Chicago, Houston, Philadelphia[4]Language...

Not to be confused with People's Party (United States). This article needs additional citations for verification. Please help improve this article by adding citations to reliable sources. Unsourced material may be challenged and removed.Find sources: Populist Party United States, 1984 – news · newspapers · books · scholar · JSTOR (December 2018) (Learn how and when to remove this message) Political party in United States Populist Party First S...

 

Jalur AgatsumaSebuah KRD 115 series di Stasiun Ōmae, November 2006IkhtisarNama asli吾妻線JenisKereta api regionalLokasiPrefektur GunmaTerminusShibukawaŌmaeStasiun18OperasiDibuka1945PemilikEast Japan Railway CompanyData teknisPanjang lintas556 km (345,5 mi)Lebar sepur1.067 mm (3 ft 6 in)Elektrifikasi1,500 V DC listrik aliran atas Peta rute Jalur Agatsuma (吾妻線code: ja is deprecated , Agatsuma-sen) adalah sebuah jalur kereta api lokal di Gunma, Jepang, da...

 

Roma Open 2024Sport Tennis Data22 – 28 aprile Edizione23ª CategoriaChallenger 75 SuperficieTerra rossa Montepremi73 000 € LocalitàRoma, Italia ImpiantoTennis Club Garden CampioniSingolare Alejandro Moro Cañas Doppio Luke Johnson / Skander Mansouri 2023 Il Roma Open 2024 è stato un torneo maschile di tennis professionistico. È stata la 23ª edizione del torneo, facente parte della categoria Challenger 75 nell'ambito dell'ATP Challenger Tour 2024, con un montepremi di 73 000 ...

2016 Stockton, California, mayoral election ← 2012 June 7, 2016 (first round)[1] November 8, 2016 (runoff)[2] 2020 →   Candidate Michael Tubbs Anthony Silva First-round vote 15,847 12,499 First-round percentage 33.42% 26.36% Second-round vote 56,165 23,426 Second-round percentage 70.57% 29.43%   Candidate Carlos Villapudua First-round vote 11,425 First-round percentage 24.10% Mayor before election Anthony Silva Elected Mayor Michael Tubbs Elect...

 

For other ships with the same name, see Japanese ship Okinoshima. Okinoshima in 1937 History Empire of Japan NameOkinoshima NamesakeOkinoshima Island Orderedfiscal 1931 BuilderHarima Shipyards Laid down27 September 1934 Launched24 November 1935 Commissioned30 September 1936 Stricken25 May 1942 FateSunk after being torpedoed by USS S-42, 12 May 1942 General characteristics TypeMinelayer Displacement4,290 long tons (4,359 t) (standard) Length 113 m (370 ft 9 in) (pp) 11...

 

Group consisting of only one element This article relies largely or entirely on a single source. Relevant discussion may be found on the talk page. Please help improve this article by introducing citations to additional sources.Find sources: Trivial group – news · newspapers · books · scholar · JSTOR (May 2024) In mathematics, a trivial group or zero group is a group consisting of a single element. All such groups are isomorphic, so one often speaks of...

У этого термина существуют и другие значения, см. Tropico (значения). Стиль этой статьи неэнциклопедичен или нарушает нормы литературного русского языка. Статью следует исправить согласно стилистическим правилам Википедии. Tropico 4 Разработчик Haemimont Games Издатели Kalypso Media Акелла...

 

American actor (born 1992) Jack QuaidQuaid at the 2019 San Diego Comic ConBornJack Henry Quaid (1992-04-24) April 24, 1992 (age 32)Los Angeles, California, U.S.OccupationActorYears active2011–presentParentsDennis Quaid (father)Meg Ryan (mother)RelativesRandy Quaid (uncle)Andrew Hyra (uncle)[1] Jack Henry Quaid (born April 24, 1992)[2] is an American actor. The son of actors Meg Ryan and Dennis Quaid, he made his acting debut with a minor role in the dystopian film ...

 

Illustration de la théologie de la substitution : Dieu foudroie les Juifs et répand sa lumière sur le christianisme. Bas-relief de l'église Saint-Jacques (1839), Gottsdorf, Basse-Bavière. Le « peuple témoin » est le nom que donne Augustin d'Hippone au peuple juif dans plusieurs de ses écrits, dont le Contre Fauste et La Cité de Dieu. Adoptant un point de vue théologique qui est celui du supersessionisme, Augustin considère que l'Église chrétienne, en tant que peup...

Gougenheimcomune Gougenheim – Veduta LocalizzazioneStato Francia RegioneGrand Est Dipartimento Basso Reno ArrondissementStrasburgo-Campagna CantoneBouxwiller TerritorioCoordinate48°42′N 7°34′E48°42′N, 7°34′E (Gougenheim) Altitudine172 e 287 m s.l.m. Superficie6,6 km² Abitanti557[1] (2009) Densità84,39 ab./km² Altre informazioniCod. postale67270 Fuso orarioUTC+1 Codice INSEE67163 CartografiaGougenheim Sito istituzionaleModifica dati su Wikidat...

 

春採湖 春採湖周辺の空中写真。海に近い位置であることが分かる。1977年撮影の3枚を合成作成。国土交通省 国土地理院 地図・空中写真閲覧サービスの空中写真を基に作成。所在地 北海道釧路市面積 0.36 km2周囲長 4.7 km最大水深 5.2 m プロジェクト 地形テンプレートを表示 春採湖(はるとりこ)は、日本の北海道釧路市にある湖である。海面下降の際に取り残された海跡�...

 

Foundational law of electromagnetism relating electric field and charge distributions This article is about Gauss's law concerning the electric field. For analogous laws concerning different fields, see Gauss's law for magnetism and Gauss's law for gravity. For the Ostrogradsky–Gauss theorem, a mathematical theorem relevant to all of these laws, see Divergence theorem. Not to be confused with Gause's law. Gauss's law in its integral form is particularly useful when, by symmetry reasons, a c...

Past events in the New York village Historical boundaries of Briarcliff Manor1891; prior to Briarcliff Manor's incorporation1906; prior to the 1906 Scarborough annexation1908; prior to the 1927 Mt. Pleasant annexation2014 The history of Briarcliff Manor, a village in the county of Westchester, New York, can be traced back to the founding of a settlement between the Hudson and Pocantico Rivers in the 19th century. The area now known as Briarcliff Manor had seen human occupation since at least ...

 

Industrial machine used in the pulp and paper industry This article contains a glossary section at the end. External image Watch video of paper machine A Fourdrinier paper machine A paper machine (or paper-making machine) is an industrial machine which is used in the pulp and paper industry to create paper in large quantities at high speed. Modern paper-making machines are based on the principles of the Fourdrinier Machine, which uses a moving woven mesh to create a continuous paper web by fi...