옌팅크다람쥐
|
Read other articles:
Ini adalah nama Batak Toba, marganya adalah Sitorus. Hendri Yanto Sitorus Bupati Labuhanbatu Utara ke-2PetahanaMulai menjabat 26 Februari 2021PresidenJoko WidodoGubernurEdy RahmayadiBupati Labuhanbatu Utara|WakilSamsul Tanjung PendahuluKhairuddin Syah SitorusPenggantiPetahana Informasi pribadiLahir13 Desember 1988 (umur 35)Aek Kota Batu, Na IX-X, Labuhanbatu Utara, Sumatera UtaraKebangsaanIndonesiaPartai politikGolkarSuami/istridr. Ramadhona SihotangAnakMuhammad Khael Asyraaf Sit...
Al-Ra'idPermukimanAl-Ra'idLocation in the Kingdom of Saudi ArabiaKoordinat: 24°38′N 46°43′E / 24.633°N 46.717°E / 24.633; 46.717Koordinat: 24°38′N 46°43′E / 24.633°N 46.717°E / 24.633; 46.717Negara Arab SaudiPemerintahan • Gubernur Pangeran RiyadhFaisal bin Bandar Al Saud • Wali kotaIbraheem Mohammed Al-SultanKetinggian612 m (2,008 ft)Zona waktuUTC+3 (AST) • Musim panas (...
.my البلد ماليزيا الموقع الموقع الرسمي تعديل مصدري - تعديل my. هو نطاق إنترنت من صِنف مستوى النطاقات العُليا في ترميز الدول والمناطق، للمواقع التي تنتمي إلى ماليزيا.[1][2] مراجع ^ النطاق الأعلى في ترميز الدولة (بالإنجليزية). ORSN [الإنجليزية]. Archived from the original on 2019-0...
British comic strip character Pansy PotterCharacter from The Beano Publication informationStar ofPansy Potter, the Strong Man's Daughter (1938 – 1949, 1953, 1958)Pansy Potter in Wonderland (1949 – 1953)Pansy Potter (1989 – 1993)First appearanceIssue 21(17 December 1938)Last appearanceIssue 3954(25 July 2018)Appearance timelineIssues 21 – 325, 369 – 652, 812 – 854, 2474 – 2640, 3666 – 3674, 3954Creator(s)Beano staffAuthor(s)UncreditedIllustrator(s)Hugh McNeill (1938–1944)Basi...
Argentine field hockey player You can help expand this article with text translated from the corresponding article in Spanish. (October 2018) Click [show] for important translation instructions. Machine translation, like DeepL or Google Translate, is a useful starting point for translations, but translators must revise errors as necessary and confirm that the translation is accurate, rather than simply copy-pasting machine-translated text into the English Wikipedia. Consider adding a top...
PikachuTokoh PokémonPikachu dalam Pokémon FireRed dan LeafGreen.PermainanperdanaPokémon Red dan Blue (1996)DidesainolehAtsuko NishidaKen Sugimori[1]Pengisi suaraIkue Ōtani[2][3]InformasiSpesiesPokémon TupaiJenis kelamin♂ Jantan / ♀ BetinaAsalKanto (Generasi I)KategoriListrik Entri PokédexNo. 025Evolusi menjadiRaichu Pikachu[a] adalah karakter fiksi dan salah satu spesies dalam waralaba media Pokémon yang dimiliki oleh Nintendo dan Game Freak. Karakte...
У этого термина существуют и другие значения, см. Чайки (значения). Чайки Доминиканская чайкаЗападная чайкаКалифорнийская чайкаМорская чайка Научная классификация Домен:ЭукариотыЦарство:ЖивотныеПодцарство:ЭуметазоиБез ранга:Двусторонне-симметричныеБез ранга:Вторич...
Moustapha Akkad2000Lahir1 Juli 1930Aleppo, SuriahMeninggal11 November 2005(2005-11-11) (umur 75)Amman, YordaniaSebab meninggalLedakan besarKebangsaanSuriah-AmerikaWarga negaraAmerika SerikatAlmamaterUniversitas California di Los Angeles,Universitas California SelatanPekerjaanSutradara filmTahun aktif1976 - 2005Dikenal atasMemproduksi serial film HalloweenSuami/istriPatricia Akkad (bercerai),Susha Ascha AkkadAnakDari PatriciaRima Akkad Monla (meninggal), Tarik Akkad, Malek Akka...
Голубянки Самец голубянки икар Научная классификация Домен:ЭукариотыЦарство:ЖивотныеПодцарство:ЭуметазоиБез ранга:Двусторонне-симметричныеБез ранга:ПервичноротыеБез ранга:ЛиняющиеБез ранга:PanarthropodaТип:ЧленистоногиеПодтип:ТрахейнодышащиеНадкласс:ШестиногиеКласс...
Department of the Ministry of Culture, Thailand This article is about the Thai government agency. For educational institutions, see Art school. Fine Arts DepartmentกรมศิลปากรSeal of Ganesh, patron of artsFine Arts Department office in BangkokAgency overviewFormed1912TypeGovernment agencyJurisdictionGovernment of ThailandHeadquartersDusit, BangkokAnnual budget3,070.1 million baht (FY2019)Minister responsibleItthiphol Khunpluem, Minister of CultureAgency executivePhanombut C...
Державний комітет телебачення і радіомовлення України (Держкомтелерадіо) Приміщення комітетуЗагальна інформаціяКраїна УкраїнаДата створення 2003Керівне відомство Кабінет Міністрів УкраїниРічний бюджет 1 964 898 500 ₴[1]Голова Олег НаливайкоПідвідомчі ор...
British rock band Bones UKBackground informationOriginCamden Town, LondonGenresRockYears active2014–presentLabelsSumerian Records, Luco Music GroupMembers Rosie Bones Carmen Vandenberg Heavy Websitewww.bones-uk.com Bones UK (stylized as BONES UK) is a rock band from Camden Town, London[1] consisting of lead vocalist / rhythm guitarist Rosie Bones, lead guitarist Carmen Vandenberg, and drummer Heavy.[clarification needed] Rosie Bones and Carmen Vandenberg met each other at th...
Universitas SunwayMotoFortuna Eruditis Favet (Fortune favours the prepared mind)JenisPrivateDidirikan1987LokasiBandar Sunway, Subang Jaya, Selangor, Malaysia3°04′05″N 101°36′15″E / 3.0681°N 101.6041°E / 3.0681; 101.6041Koordinat: 3°04′05″N 101°36′15″E / 3.0681°N 101.6041°E / 3.0681; 101.6041Afiliasi[Lancaster University, Le Cordon Bleu Inst.]Situs websunway.edu.my Universitas Sunway Universitas Sunway adalah sebuah univer...
Artikel ini sebatang kara, artinya tidak ada artikel lain yang memiliki pranala balik ke halaman ini.Bantulah menambah pranala ke artikel ini dari artikel yang berhubungan atau coba peralatan pencari pranala.Tag ini diberikan pada Oktober 2022. Adler von Lübeck oleh Olaf Rahardt, dilukis pada tahun 2004. Sejarah Lübeck Nama Adler von LübeckPembangun Wallhalbinsel di LübeckPasang lunas 1565Diluncurkan Maret 1566Mulai berlayar 1567Nasib Dihancurkan pada 1588 Ciri-ciri umum Berat benaman 2,0...
Special function defined by an integral In integral calculus, an elliptic integral is one of a number of related functions defined as the value of certain integrals, which were first studied by Giulio Fagnano and Leonhard Euler (c. 1750). Their name originates from their originally arising in connection with the problem of finding the arc length of an ellipse. Modern mathematics defines an elliptic integral as any function f which can be expressed in the form f ( x ) = ∫ c x R ( ...
Preschool educational approach This article is about preschool educational approach. For early years education, see Preschool. For other uses, see Kindergarten (disambiguation). A kindergarten classroomChildcare At home Parents Extended family Au pair Babysitter Governess Nanny Outside the home Daycare Pre-school playgroup Educational settings Early childhood education Homeschooling Pre-kindergarten Preschool Kindergarten Primary school Institutions and standards Child protection In loco pare...
Not to be confused with Foundation for Press Freedom. For other uses of Freedom of the Press, see Freedom of the press (disambiguation). Non-profit organization Freedom of the Press FoundationAbbreviationFPFFormationDecember 17, 2012; 11 years ago (2012-12-17)TypeNon-governmental organizationPurposeFreedom of the press and Freedom of speech fundingRegion served GlobalKey peopleEdward SnowdenJohn Perry BarlowJohn CusackDaniel EllsbergGlenn GreenwaldXeni JardinLaura PoitrasTre...
SI-enheterna ingår i det Internationella måttenhetssystemet (SI), en standard för måttenheter att användas vid mätning av storheter. De sju grundenheterna är noggrant definierade utifrån sju naturkonstanter.[1] En stor mängd härledda enheter bygger sedan på dessa. Tidigare fanns även en grupp som kallades tilläggsenheter, men de räknas numera till de härledda enheterna. Förkortningen SI kommer från franskans Système International d'Unités. Grundenheter Relationer mellan gru...
2002 single by LL Cool J featuring AmerieParadiseUK CD single coverSingle by LL Cool J featuring Ameriefrom the album 10 B-sideAfter SchoolLL Cool J MegamixReleasedDecember 14, 2002Recorded2002StudioSony Music, New York CityGenre Hip hop R&B Length4:35LabelDef JamSongwriter(s) James Todd Smith Curtis Jackson Jean-Claude Olivier Samuel Barnes Amerie Mi Marie Rogers Kenneth Burke Allan Felder Norma Jean Wright Producer(s)Poke & ToneLL Cool J singles chronology All I Have (2002) Para...
Zero divisors in a module For other uses, see Torsion (disambiguation). In mathematics, specifically in ring theory, a torsion element is an element of a module that yields zero when multiplied by some non-zero-divisor of the ring. The torsion submodule of a module is the submodule formed by the torsion elements (in cases when this is indeed a submodule, such as when the ring is commutative). A torsion module is a module consisting entirely of torsion elements. A module is torsion-free if its...