수학에서 정수(整數, 문화어: 옹근수, integer)는 양의 정수(1, 2, 3, 4, 5, 6, 7, 8, ... , n), 음의 정수(-1, -2, -3, -4, -5, -6, -7, -8...) 및 0으로 이루어진 수의 체계이다. 또는 자연수, 자연수의 음수 및 영을 통칭하는 말이다. 수론의 가장 기본적인 연구 대상이다. 정수 전체의 집합의 기호는 이다.
정의
정수 체계는 (0을 포함하는) 자연수 체계 으로부터 다음과 같이 정의할 수 있다. 집합 위에 다음과 같은 조건을 만족시키는 최소 동치 관계를 주자.
이 동치 관계에 대한 몫집합을 정수 집합 라고 정의하자. 그 위에 덧셈과 곱셈을 다음과 같이 정의한다.
그렇다면 정수의 집합 는 환을 이루며, 이를 정수환(整數環, 영어: ring of integers)이라고 한다. 이러한 구성은 소거가환 모노이드를 아벨 군으로 확장하는 그로텐디크 군 구성의 한 예다.
성질
대수적 성질
자연수 집합과 마찬가지로, 정수 집합은 덧셈과 곱셈에 대해 닫혀 있다. 하지만 자연수 집합과 다르게, 뺄셈에도 닫혀 있다. 나눗셈에는 닫혀 있지 않다.