이 소리에 모여!

이 소리에 모여!》(この音とまれ!)는 아뮤가 원작한 일본의 만화이다. 점프스퀘어(슈에이샤)에서 2012년부터 발간 중.

본작은, 일본 악기의 하나 고토를 테마로 한 학원 만화이다. 작중에는 고전곡부터 본작 오리지널 곡까지 다종다양한 고토 음악이 등장하였고, 2017년에는 작중에 등장하는 고토 음악을 수록한 CD가 발표되어, 문화청 예술제에서 우수상을 수상하였다.

줄거리

토키세 고교의 신입생인 쿠라타 타케조는 동아리 발표회에서 미숙한 실력임에도 너무나도 즐겁게 고토를 연주하는 선배들의 모습에 감화되어 소쿄쿠 부에 입부한다.

그러나 1년이 지난 후 선배들이 졸업하자 동아리에 혼자만 남게 된 타케조. 설상가상으로 불량학생들이 부실을 점거하고 아지트처럼 사용하고 있는 상황이 되었다. 5명 이상의 부원을 모으지 못하면 폐부되는 상황에서 타케조는 열심히 부원을 모집해보려 하지만 학생들은 고토 같은 마이너한 악기에는 관심을 가져주지 않는다.

그러던 어느 날, 일대에서 악명을 떨치는 불량학생 쿠도 치카가 찾아오더니 입부 신청서를 내민다. 그리고 얼마 후, 고토 종가 호즈키 카이의 딸이자 천재소녀로 유명한 호즈키 사토와도 입부하면서 고토부에 파란이 불게 되는데...

외부 링크

Read other articles:

Becky ChambersKebangsaanAmerika SerikatGenreFiksi ilmiahKarya terkenalThe Long Way to a Small, Angry PlanetA Closed and Common OrbitWebsitewww.otherscribbles.com Becky Chambers adalah seorang pengarang fiksi ilmiah asal Amerika. Novel debut tahun 2014nya adalah The Long Way to a Small, Angry Planet, dan disusul oleh sebuah sekuel, A Closed and Common Orbit, pada 2016. Novel-novelnya mengambil latar alam fiksi yang disebut Galactic Commons. Karya ketiganya, yang berjudul, Record of a Spac...

 

Jan Sluijters (1951) Johannes Carolus Bernardus (Jan) Sluijters, atau Sluyters (17 Desember 1881 – 8 Mei 1957) adalah seorang pelukis dan litograf Belanda.[1] Sluyter menempuh pendidikan di Sekolah Guru Gambar Pemerintah pada tahun 1893 hingga 1900.[1] Kemudian ia melanjutkan studi di Akademi Seni Rupa Amsterdam pada tahun 1901-1902.[1][2] Pada tahun 1904, ia pernah mendapatkan hadian dari Roma.[1] Ia pernah tinggal di Italia, Paris dan ...

 

Daerah Khusus Ibukota Jakarta IIDaerah Pemilihan / Daerah pemilihanuntuk Dewan Perwakilan RakyatRepublik IndonesiaWilayah Daftar Kota : Jakarta Pusat Jakarta Selatan Luar Negeri ProvinsiDKI JakartaPopulasiDalam Negeri : 3.500.822 (2023)[1]Luar Negeri : 3.011.202 (2022)[2]ElektoratDalam Negeri : 2.596.401 (2024)[3]Luar Negeri : 1.750.474 (2024)[4]Daerah pemilihan saat iniDibentuk2004Kursi9 (2004—09)7 (2009—sekarang)Anggota  Himm...

كاستراكيون تقسيم إداري البلد اليونان  [1] خصائص جغرافية إحداثيات 38°25′02″N 21°53′41″E / 38.41722222°N 21.89472222°E / 38.41722222; 21.89472222   الارتفاع 110 متر،  و67 متر  السكان التعداد السكاني 625 (resident population of Greece) (2021)538 (resident population of Greece) (2001)429 (resident population of Greece) (1991)670 (resident populat...

 

British diplomat Not to be confused with Simon Harcourt, 1st Viscount Harcourt. The Right HonourableThe Earl HarcourtFRS PCLord Lieutenant of IrelandIn office29 October 1772 – 7 December 1776MonarchGeorge IIIPreceded byThe Viscount TownshendSucceeded byThe Earl of Buckinghamshire Personal detailsBorn1714Stanton Harcourt, Oxfordshire, EnglandDied16 September 1777 (aged 63)Nuneham Park, Oxfordshire Simon Harcourt, 1st Earl Harcourt, PC, FRS (1714 – 16 September 1777), known...

 

Les Essarts-lès-SézannecomuneLes Essarts-lès-Sézanne – Veduta LocalizzazioneStato Francia RegioneGrand Est Dipartimento Marna ArrondissementÉpernay CantoneSézanne-Brie et Champagne TerritorioCoordinate48°45′N 3°39′E / 48.75°N 3.65°E48.75; 3.65 (Les Essarts-lès-Sézanne)Coordinate: 48°45′N 3°39′E / 48.75°N 3.65°E48.75; 3.65 (Les Essarts-lès-Sézanne) Superficie17,38 km² Abitanti280[1] (2009) Densità16,11 ab....

Ho in 2023 Winnie Ho Wing-yin is the current Secretary for Housing in Hong Kong, appointed on 1 July 2022 as part of John Lee's administration.[1] Biography According to her government profile, Ho was a graduate of the Faculty of Architecture from the University of Hong Kong.[1] Ho joined the government in 1992 as an Architect, was promoted to Chief Architect in 2009, Government Architect in 2012, and Deputy Director of Architectural Services in 2018, and Director of Architect...

 

  「俄亥俄」重定向至此。关于其他用法,请见「俄亥俄 (消歧义)」。 俄亥俄州 美國联邦州State of Ohio 州旗州徽綽號:七葉果之州地图中高亮部分为俄亥俄州坐标:38°27'N-41°58'N, 80°32'W-84°49'W国家 美國加入聯邦1803年3月1日,在1953年8月7日追溯頒定(第17个加入联邦)首府哥倫布(及最大城市)政府 • 州长(英语:List of Governors of {{{Name}}}]]) •&...

 

 烏克蘭總理Прем'єр-міністр України烏克蘭國徽現任杰尼斯·什米加尔自2020年3月4日任命者烏克蘭總統任期總統任命首任維托爾德·福金设立1991年11月后继职位無网站www.kmu.gov.ua/control/en/(英文) 乌克兰 乌克兰政府与政治系列条目 宪法 政府 总统 弗拉基米尔·泽连斯基 總統辦公室 国家安全与国防事务委员会 总统代表(英语:Representatives of the President of Ukraine) 总...

Навчально-науковий інститут інноваційних освітніх технологій Західноукраїнського національного університету Герб навчально-наукового інституту інноваційних освітніх технологій ЗУНУ Скорочена назва ННІІОТ ЗУНУ Основні дані Засновано 2013 Заклад Західноукраїнський �...

 

此条目序言章节没有充分总结全文内容要点。 (2019年3月21日)请考虑扩充序言,清晰概述条目所有重點。请在条目的讨论页讨论此问题。 哈萨克斯坦總統哈薩克總統旗現任Қасым-Жомарт Кемелұлы Тоқаев卡瑟姆若马尔特·托卡耶夫自2019年3月20日在任任期7年首任努尔苏丹·纳扎尔巴耶夫设立1990年4月24日(哈薩克蘇維埃社會主義共和國總統) 哈萨克斯坦 哈萨克斯坦政府...

 

.рфDiperkenalkan13 Mei 2010; 14 tahun lalu (2010-05-13)Jenis TLDDiinternasionalkan oleh alfabet Kiril dengan domain tingkat atas kode negaraStatusAktifRegistriPusat Koordinasi untuk TLD RU/РФPemakaian yang diinginkanEntitas yang terhubung dengan  RusiaPemakaian aktualAktif / Pendaftaran terbatasDomain terdaftar900,058 (Februari 2016)[1]PembatasanDitujukan untuk nama domain dalam alfabet Kiril saja.[2]DNS namexn--p1aiDNSSECtidakSitus webкц.рф .рф (punycode: ...

This article needs additional citations for verification. Please help improve this article by adding citations to reliable sources. Unsourced material may be challenged and removed.Find sources: 1993 in India – news · newspapers · books · scholar · JSTOR (September 2018) (Learn how and when to remove this message) List of events ← 1992 1991 1990 1993 in India → 1994 1995 1996 Centuries: 18th 19th 20th 21st Decades: 1970s 1980s 1990s 2000s ...

 

Main article: F-86 Sabre F-86 Sabre in flight. List of Sabre and Fury units in the US military identifies the military branches and units that used the North American Aviation F-86 Sabre and FJ Fury. Units existed in regular USAF, ANG, USN, and USMC squadrons. USAF F-86 Units Source: Baugher F-86D[1] A West Virginia Air National Guard F-86H. A Tennessee Air Guard F-86D. Air National Guard Squadrons 102d, New York ANG (1957–1959) 104th, Massachusetts ANG (1957–1965) 111th, Texas A...

 

Pour les articles homonymes, voir Gouvernement Jules Ferry. Gouvernement Jules Ferry (2) Troisième République Données clés Président de la République Jules Grévy Président du Conseil Jules Ferry Formation 21 février 1883 Fin 30 mars 1885 Durée 2 ans, 1 mois et 9 jours Composition initiale Coalition Gauche républicaine - Union démocratique - Union républicaine - Centre gauche Représentation IIIe législature 371  /  557 Gouvernement Armand Fallières Gou...

تعمية بالإبدال[1] أو التعمية بالإعاضة[1] (بالإنجليزية: Substitution cipher)‏ هي طريقة في التعمية تستبدل فيها أجزاء من النص العادي بالنص المعمى وفقاً لنظام محدد. من الممكن أن تكون وحدات الاستبدال هي أحرف وحيدة (وهي الحالة العامة) أو أزواج محرفية أو ثلاثيات محرفية أو خليطاً مما ...

 

Die Abenteuer des Prinzen Achmed (bahasa Indonesia: Petualangan Pangeran Achmed)adalah film animasi Jerman yang merupakan film animasi panjang pertama di Eropa,[1] sekaligus film animasi panjang tertua di dunia yang masih bertahan hingga kini.[2] Film ini dibuat oleh animator wanita berkebangsaan Jerman bernama Lotte Reiniger pada tahun 1926, sebelas tahun sebelum film Walt Disney pertama yang berjudul Snow White and the Seven Dwarfs[1] dirilis. Selain karena usia...

 

Traprock mountain ridge in the American state of Connecticut Saltonstall MountainLooking south at two men fishing from a boat in Lake Saltonstall, Saltonstall Mountain is on the right.Highest pointElevationest. 320 ft (98 m) ridge high pointCoordinates41°16′44″N 72°51′42″W / 41.27889°N 72.86167°W / 41.27889; -72.86167 to 41°18′58″N 72°47′12″W / 41.31611°N 72.78667°W / 41.31611; -72.78667GeographyLocationBra...

Ice hockey team in Wichita, KansasWichita WindCityWichita, KansasLeagueCentral Hockey LeagueFounded1980Folded1983Home arenaKansas ColiseumColorsBlue, white, and orangeAffiliatesEdmonton OilersNew Jersey Devils The Wichita Wind were a minor league ice hockey team based in Wichita, Kansas from 1980 to 1983. They were the feeder team of the Edmonton Oilers (1980–81 and 1981–82 seasons) and the New Jersey Devils (1982–83). The Wind played in the Central Hockey League (CHL) at the Britt Brow...

 

Basic subset of a topological space Example: the blue circle represents the set of points (x, y) satisfying x2 + y2 = r2. The red disk represents the set of points (x, y) satisfying x2 + y2 < r2. The red set is an open set, the blue set is its boundary set, and the union of the red and blue sets is a closed set. In mathematics, an open set is a generalization of an open interval in the real line. In a metric space (a set with a distance defined between every two points), an open set is a s...