이름 (강제법)

집합론에서 이름(영어: name)은 강제법에 등장하는, 집합의 개념의 일종의 일반화인 누적 위계이다. 집합의 경우 무언가가 집합의 원소인지 여부는 참 또는 거짓이지만, 무언가가 이름의 원소인지 여부는 보다 일반적인 원순서 집합 또는 완비 불 대수의 원소에 따라 나타내어진다.

정의

이름

임의의 집합 가 주어졌다고 하자. 그렇다면, 연산

에 대한 누적 위계-이름 위계(영어: hierarchy of -names)라고 하며,[1]:188, Definition VII.2.5 로 표기한다. 이 개념은 강제법에 핵심적으로 사용된다.

임의의 두 이름 에 대하여, 의 "참·거짓 여부"는 다음과 같은 의 부분 집합으로 나타내어진다.

즉, 이 경우 참·거짓 여부가 (고전 논리의) 2원소 불 대수 대신 불 대수 로 나타내어진다.

임의의 순서수 에 대하여, 다음과 같은 함수를 정의하자.

좋은 이름

원순서 집합 -이름 가 주어졌다고 하자. 또한, 함수 치역의 모든 원소가 강상향 반사슬이라고 하자. 이 경우, 다음과 같은 이름을 구성할 수 있다.

이러한 꼴의 이름을 에 대한 좋은 이름(영어: nice name)이라고 한다.[1]:208, Definition VII.5.11

특히, 에 대한 좋은 이름 가 주어졌을 때, 다음이 성립한다.

성질

범주론적 성질

임의의 순서수 에 대하여, 함자를 이룬다. 구체적으로, 임의의 함수 에 대하여,

이다.

보다 일반적으로, 이 집합과 이항 관계범주일 때, 다음과 같은 함자가 존재한다.

임의의 부분 집합 한원소 집합 에 대하여, 다음과 같은 이항 관계 를 생각하자.

그렇다면, 함수

를 생각하자. 이를 -이름의 -해석이라고 하며,

로 표기한다.[1]:189, Definition VII.2.7

강제법에서, 포괄적 순서 아이디얼 를 사용하여 정의한 확장된 원소를 나타낸다.

모형 이론적 성질

이름의 개념은 ZFC표준 추이적 모형에 대하여 절대적이다.[1]:188, §VII.2 즉, ZFC표준 추이적 모형 및 집합 에 대하여, 다음이 성립한다.

다시 말해, 이다. 마찬가지로, 좋은 이름의 개념은 절대적이다.[1]

ZFC표준 추이적 모형 원순서 집합 및 두 이름 에 대하여, 다음이 성립하는 -좋은 이름 가 존재한다.

다시 말해, 임의의 포괄적 순서 아이디얼 에 대하여, -좋은 이름 가 존재한다. (그러나 그 역은 일반적으로 성립하지 않는다. 즉, 만약 -좋은 이름일 때, 일 필요는 없다.[1]:209)

만약 공집합이라면 이다.

만약 한원소 집합이라면 멱집합 연산과 동형이며, 이름 위계는 폰 노이만 전체와 동형이다. 이에 따라 이름 위계는 폰 노이만 전체의 확장으로 여길 수 있다.

각주