엑스선 회절

X선을 결정에 조사하면 브래그 법칙을 만족시킨 방향에만 X선이 회절되어 결정구조를 반영시킨 패턴이 생긴다.

엑스선 회절(X‐ray diffraction, XRD) 또는 X선 회절결정격자를 통과한 X선회절을 나타낸 영상이다.

1912년 막스 폰 라우에가 이 현상을 발견하여 X선이 사실은 파장이 짧은 전자기파라는 것을 밝혔다.

거꾸로 이 현상을 이용해 물질의 결정 구조를 조사하는 것이 가능하다. 이러한 X선 회절의 결과를 해석해 결정 내부의 원자가 어떤 배열을 하고 있는가를 밝히는 방법을 'X선 결정구조해석' 또는 'X선 회절법'이라 한다. 이 외에 회절현상을 이용한 결정구조해석의 방법으로 전자회절법, 중성자회절법 등이 있다.

X선 회절 결정학은 광물학[1], 재료과학[2], 촉매작용[3][4][5][6], 생화학[7][8][9][10][11], 예술 등 다양한 과학 분야에서 사용됩니다. 역사[12][13][14][15] 그리고 고고학에서도[16].

같이 보기

  1. Modern X-ray Diffraction Methods in Mineralogy and Geosciences, Reviews in Mineralogy & Geochemistry, Vol. 78 pp. 1-31, 2014, https://www.geo.arizona.edu/xtal/group/pdf/RMG78_1.pdf
  2. Fontes, Marcos Alves; Scheid, Vladimir Henrique Baggio; Machado, David de Souza; Casteletti, Luiz Carlos; Nascente, Pedro Augusto de Paula (2019). “Morphology of the DIN 100Cr6 Case Hardened Steel after Plasma Nitrocarburizing Process”. 《Materials Research》 22 (3). doi:10.1590/1980-5373-mr-2018-0612. ISSN 1980-5373. 
  3. Surface chemistry of phase-pure M1 MoVTeNb oxide during operation in selective oxidation of propane to acrylic acid. Journal of Catalysis, 2012, 285, 48-60  https://pure.mpg.de/rest/items/item_1108560_8/component/file_1402724/content
  4. The reaction network in propane oxidation over phase-pure MoVTeNb M1 oxide catalysts. Journal of Catalysis, 2014, 311, 369-385. https://core.ac.uk/download/pdf/210625575.pdf
  5. Linares, C.F., Bretto, P. Hydrotreating of light cycle oil over CoMo catalysts supported on niobia-alumina or niobia-silica. Reac Kinet Mech Cat 136, 837–849 (2023). https://doi.org/10.1007/s11144-023-02392-1
  6. Influence of the SMSI effect on the catalytic activity of a Pt(1%)/Ce0.6Zr0.4O2 catalyst: SAXS, XRD, XPS and TPR investigations, Applied Catalysis B: Environmental, Volume 48, Issue 2, 18 March 2004, Pages 133-149, https://doi.org/10.1016/j.apcatb.2003.10.001
  7. Ilari, Andrea; Savino, Carmelinda (2008). Keith, Jonathan M., 편집. 《Protein Structure Determination by X-Ray Crystallography》 (영어). Totowa, NJ: Humana Press. 63–87쪽. doi:10.1007/978-1-60327-159-2_3. ISBN 978-1-60327-159-2. 
  8. Maveyraud, Laurent, and Lionel Mourey. 2020. "Protein X-ray Crystallography and Drug Discovery" Molecules 25, no. 5: 1030. https://doi.org/10.3390/molecules25051030     
  9. Srivastava, A.; Nagai, T.; Srivastava, A.; Miyashita, O.; Tama, F. Role of Computational Methods in Going beyond X-ray Crystallography to Explore Protein Structure and Dynamics. Int. J. Mol. Sci. 2018, 19, 3401. https://doi.org/10.3390/ijms19113401
  10. X-ray crystallography of peptides: The contributions of the Italian laboratories, https://onlinelibrary.wiley.com/doi/epdf/10.1002/%28SICI%291097-0282%281996%2940%3A1%3C3%3A%3AAID-BIP2%3E3.0.CO%3B2-%23
  11. Benvenuti, M., Mangani, S. Crystallization of soluble proteins in vapor diffusion for x-ray crystallography. Nat Protoc 2, 1633–1651 (2007). https://doi.org/10.1038/nprot.2007.198
  12. https://www.dectris.com/en/company/news/newsroom/news/behind-the-scenes-at-the-museum-fine-arts-with-x-ray-vision/
  13. Morabito, G.; Marinoni, N.; Bais, G.; Cantaluppi, M.; Botteon, A.; Colombo, C.; Gatta, G.D.; Polentarutti, M.; Realini, M.; Possenti, E. Synchrotron Micro-X-ray Diffraction in Transmission Geometry: A New Approach to Study Polychrome Stratigraphies in Cultural Heritage. Minerals 2024, 14, 866. https://doi.org/10.3390/min14090866
  14. High-resolution non-invasive X-ray diffraction analysis of artists’ paints, Journal of Cultural Heritage, Volume 53, January–February 2022, Pages 1-13, https://doi.org/10.1016/j.culher.2021.10.008
  15. Kriznar, A. Material and Technical Analysis as a Support for Art-Historical Characterization of Selected Mural Paintings in Austria around 1400. Colorants 2023, 2, 471-486. https://doi.org/10.3390/colorants2030022
  16. Schreiner M, Frühmann B, Jembrih-Simbürger D, Linke R. X-rays in art and archaeology: An overview. Powder Diffraction. 2004;19(1):3-11. doi:10.1154/1.1649963