TiO2-ის აღმოჩენა ერთმანეთისაგან დამოუკიდებლად განახორციელეს ინგლისელმა უ. გრეგორიმ და გერმანელმა ქიმიკოსმა მ. ჰ. კლაპროტმა. გრეგორმა, რკინიანი მაგნიტური ქვიშის კვლევისას (კრიდი, კორნოული, გაერთიანებული სამეფო), 1789 წელს, გამოყო უცნობი ლითონის ახალი «მიწა» (ჟანგი) რომელსაც უწოდა მენაკენოური. 1795 წ. გერმანელმა ქიმიკოსმა კლაპროტმა აღმოაჩინა მინერალ რუტილში ახალი ელემენტი და მას უწოდა ტიტანი. ორი წლის შემდეგ კლაპროტმა დაადგინა რომ, რუტილი და მენაკენური მიწა — ერთი და იგივე ელემენტის ჟანგებია, რომელსაც კლაპროტის მიერ შერჩეული სახელწოდება «ტიტანი» შერჩა. 10 წლის შემდეგ ტიტანის აღმოჩენა მოხდა მესამეჯერ. ფრანგმა მეცნიერმა ლუი ვოკლენმა აღმოაჩინა ტიტანი ანატაზში და დაამტკიცა, რომ რუტილი და ანატაზი -ტიტანის იდენტური ჟანგებია.
ლითონური ტიტანის პირველად მიღებული იქნა 1825 წელს, იენს იაკობ ბერცელიუსის მიერ. ტიტანის მაღალი აქტივობისა და მისი გაწმენდის სიძნელის გამო სუფთა Ti ნიმუში ჰოლანდიელებმა ა. ვან არკელმა და ი&bsp;ბურმა 1925 წელს მიიღეს TiI4-ის თერმული იოდიდური ორთქლის დაშლის მეთოდით.
სახელწოდების წარმოშობა
ლითონმა თავისი სახელწოდება მიიღო ძველ ბერძნული მითოლოგიის პერსონაჟების გეას შვილების ტიტანების პატივსაცემად. ელემენტს სახელწოდება მისცა მარტინ კლაპროტმა, თავისი თვალთახედვის მიხედვით ქიმიურ ნომენკლატურაზე, რომელიც ფრანგული სკოლის საწინააღმდეგო იყო, სადაც ცდილობდნენ ელემენტისთვის მიეცათ სახელი თავისი ქიმიური თვისების მიხედვით. რადგანაც გერმანელმა მეცნიერმა თვითონ აღნიშნა რომ ვერ განსაზღვრავდა ახალი ელემენტის თვისებებს მხოლოდ მისი ოქსიდის მიხედვით, მან ამიტომაც მონახა სახელი ძველ მითოლოგიიდან, მის მიერ ადრე აღმოჩენილი ურანის ანალოგიურად.
მაგრამ მეორე ვერსიის მიხედვით, რომელიც ჟურნალმა «ტეხნიკა-მოლოდეჟიმ» გამოაქვეყნა 1980-იანი წლების ბოლოს, ახალ აღმოჩენილი ელემენტი თავის სახელს არა მითოლოგიურ ტიტანებს უმადლოდეს არამედ ტიტანიას - ფერიების დედოფალს გერმანული მითოლოგიიდან (ობერონის ცოლი შექსპირის«სიზმარი ზაფხულის ღამით»). ასეთი სახელწოდება დაკავშირებულია ლითონის უჩვეულოდ «სიმჩატით» (მცირე სიმკვრივით).
არსებობა ბუნებაში
ტიტანი მე-10 ადგილზეა თავისი გავრცელებით ბუნებაში. დედამიწის ქერქში მისი შემცველობა წონის 0,57 %-ია, ზღვის წყალში 0,001 მგ/ლ[3]. ულტრაფუძე ქანებში 300 გრ/ტ, ფუძე ქანებში — 9 კგ/ტ, მჟავე ნიადაგებში 2,3 კგ/ტ, თიხებში და ფიქალებში 4,5 კგ/ტ. დედამიწის ქერქში ტიტანი ყოველთვის ოთხვალენტიანია და მხოლოდ ჟანგბადიან ნაერთებშია.
თავისუფალინსახით ის ბუნებაში არ გვხვდება. ტიტანს გამოფიტვის განიავებისა და შეზღუდვის პირობებში აქვს გეოქიმიური მსგავსება Al2O3. ის კონცენტრირდება განიავებადი ქერქის ბოქსიტებში და ზღვის თიხოვან ნალექებში. ტიტანის გადატანა ხდება მინერალების მექანიკური ნატეხების და კოლოიდების სახით. მასის მიხედვით 30 %-მდე TiO2 გროვდება ზოგი სახის თიხებში. ტიტანის მინერალები მდგრადებია გამოფიტვის განიავების მიმართ წარმოაქმნიან მსხვილ კონცენტრაციას ქვიშრობებში. ცნობილია 100-მდე სახეობის მინერალი რომლებიც შეიცავენ ტიტანს. მათ შორის მნიშვნელოვანია: რუტილი TiO2, ილმენიტი FeTiO3, ტიტანომაგნეტიტი FeTiO3 + Fe3O4, პეროვსკიტი CaTiO3, ტიტანიტი CaTiOSiO4. განასხვავებენ ტიტანის ფესვურ, ძარღვულ მადნებს — ილმენიტი-ტიტანომაგნეტიტი და ქვიშრობულ მადნებს — რუტილი-ილმენიტი-ცირკონული.
საბადოები
ტიტანის საბადოები მდებარეობენ სარ, რუსეთში, უკრაინაში, ჩინეთში, იაპონიაში, ავსტრალიაში, ინდოეთში, ცეილონზე, ბრაზილიაში, სამხრეთ კორეაში, ყაზახეთში[4].
2002 წლისათვის, მოპოვებული ტიტანის 90 % გამოიყენებოდა ტიტანის დიოქსიდის TiO2 წარმოებისათვის. ტიტანის დიოქსიდის მსოფლიო წარმოება შეადგენს 4,5 მლნ.ტ. წელიწადში. ტიტანის დიოქსიდის დამტკიცებული მარაგი (რუსეთის გარეშე) შეადგენს მიახლოებით 800 მლნ.ტ. 2006 წლისათვის, აშშ-ის გეოლოგიური სამსახურის შეფასებით, ილმენიტური მადნების მარაგი ტიტანის დიოქსიდზე გადათვლით და რუსეთის ჩაუთვლელად 603—673 მლნ.ტ., ხოლო რუტილის — 49.7—52.7 მლნ.ტ[5]. ასე რომ ამ ტემპებით მოპოვებისას რუსეთის ჩაუთვლელად მსოფლიო მარაგი მიახლოებით 150 წელი ეყოფა. მსოფლიოში ტიტანის საბადოებით პირველ ადგილზე არის ჩინეთი ხოლო მეორე ადგილზე არის რუსეთი. მსოფლიოში ტიტანის ყველაზე მსხვილი მწარმოებელია რუსული კომპანია — «ВСМПО-АВИСМА»[6].
მიღება
როგორც წესი, ტიტანისა და მისი ნაერთების წარმოების საწყისი მასალას წარმოადგენს ტიტანის დიოქსიდი მინარევების შედარებით მცირე რაოდენობით. კერძოდ ეს შეიძლება იყოს რუტილის კონცენტრატი, რომელიც მიიღება ტიტანის მადნის გამდიდრებით. თუმცა რუტილის მარაგი მსოფლიოში მეტად შეზღუდულია, და ხშირად გამოიყენებენ ეგრეთ წოდებულ სინთეთიკურ რუტილს ან ტიტანის წიდას, რომელიც მიიღება ილმენიტის კონცენტრატის გადამუშავებისას. ტიტანიანი წიდის მისაღებად ხდება ილმენიტის კონცენტრატის აღდგენა ელ. ღუმელში, ამ დროს რკინა გამოეყოფა ლითონურ ფაზაში (თუჯი), ხოლო ტიტანის ოქსიდები და მინარევები რომლებიც არ აღდგნენ წარმოქმნიან წიდის ფაზას. მდიდარ წიდას ამუშავებენ ქლორიდებით ან გოგირდმჟავური მეთოდით.
ტიტანური მადნის კონცენტრატებზე ზემოქმედებენ გოგირდმჟავური ან პირომეტალურგიული დამუშავებით. გოგირდმჟავური დამუშავების პროდუქტია — ტიტანის დიოქსიდის ფხვნილი TiO2. პირომეტალურგიული მეთოდისას მადანს ახურებენ კოქსთან ერთად და ამუშავებენ ქლორით, სადაც მიიღებენ ტიტანის ტეტრაქლორიდის ორთქლს TiCl4: TiO2 + 2C + 2Cl2 =TiCl4 + 2CO
წარმოქმნილ ორთქლ TiCl4 850 °C-ის პირობებში აღადგენენ მაგნიუმის მეშვეობით: TiCl4+ 2Mg = 2MgCl2+ Ti
მიღებულ ტიტანიან «ღრუბელს» გადაადნობენ და ასუფთავებენ. ტიტანის რაფინირება ხდება იოდიდური ხერხით ან ელექტროლიზით, სადაც Ti გამოყოფენ TiCl4-დან.
ფიზიკური თვისებები
ტიტანი - მჩატე მოვერცხლისფრო-თეთრი ლითონია. ტიტანი ორი კრისტალური მოდიფიკაციის არსებობს: α-Ti ჰექსაგონალური მჭიდროდ შეფუთული მესერით (a=2,951 Å; с=4,679 Å[7]; z=2; სივრცული ჯგუფიC6mmc), β-Ti კუბური მოცულობა ცენტრირებული შეფუთვით (a=3,269 Å; z=2; სივრცული ჯგუფი Im3m), გადასვლის ტემპერატურაა α↔β 883 °C, ΔH გადასვლის 3,8 კჯ/მოლი. დნობის წერტილია 1660±20 °C, დუღილის წერტილია 3260 °C, α-Ti და β-Ti სიმკვრვე შესაბამისად ტოლია 4,505 (20 °C) და 4,32 (900 °C) გ/სმ³, ატომური სიმკვრივე 5,71×1022 ატ/სმ³. პლასტიკურია და შედუღება შეიძლება ინერტულ ატმოსფეროში. კუთრი წინაღობა - 0,42 მკ ომი·მ 20 °C ტემპერატურის დროს
გააჩნია მაღალი სიბლანტე, მექანიკური დამუშავებისას მიდრეკილია მჭრელ ინსტრუმენტზე მიკრობისაკენ, და ამიტომაც საჭიროებს ინსტრუმენტზე სპეციალური საპოხი საშუალებების წასმას.
ჩვეულებრივი ტემპერატურის პირობებში იფარარება დამცავი პასივური ოქსიდის TiO2 ფენით, ამის გამო კოროზიამდგრადია უმრავლეს გარომოს მიმართ (ტუტეების გარდა).
ტიტანის მტვერს აქვს თვისება მიდრეკილება აფეთქებისაკენ. აფეთქების ტემპერატურაა 400 °C. ტიტანის ნახერხი ბურბუშელა ხანძარსაშშია.
ქიმიური თვისებები
მდგრადია კოროზიის მმართ თავისი ოქსიდის ზედა ფენის გამო, მაგრამ მისი დაფქვის შემთხვევაში, ან მწვრილი ბურბუშელის ან მავთულის სახით ტიტანი პიროფორულია[8].
ტიტანი მდგრადია უმრავლესი მჟავეების და ტუტეების გაზავებული ხსნარების მიმართ (გარდა HF, H3PO4 და კონცენტრირებული H2SO4).
კომპლექსოშემქმნელების თანდასწრებით ადვილად შედის რეაქციაში სუსტ მჟავვებთანც კი, მაგალითად, HF-სთან ურთიერთქმედებს კომპლექსური ანიონის [TiF6]2− წარმოქმნის გამო.
ჰაერზე გახურებისას 1200 °C-მდე Ti ალდება ცვალებადი შემადგენლობის ოქსიდური ფაზების წარმოქმნით TiOx. ტიტანის მარილების ხსნარებიდან ილექება ტიტანის ჰიდროქსიდი TiO(OH)2·xH2O, რომლის ფრთხილი გახურებით მიიღება ოქსიდი TiO2. ჰიდროქსიდი TiO(OH)2·xH2O და დიოქსიდი TiO2ამფოტერულია.
გახურებისას Ti ურთიერთქმედებს ჰალოგენებთან. ტიტანის ტეტრაქლორიდი TiCl4 ნორმალურ პირობებში — უფერო სითხეა, რომელიც ჰაერზ ეძალიან ორთქლიანობს, რაც აიხსნება ძლიერი TiCl4-ის ჰიდროლიზით ჰაერში არსებული წყლის ორთქლთან და მარილმჟავის და ტიტანის ჰიდროქსიდის უმწვრილესი წვეთების წარმოქმნით.
TiCl4 აღდგენით წყალბადით, ალუმინით, სილიციუმით, სხვა ძლიერი აღმდგენელებით, მიღებულია ტიტანის ტრიქლორიდი და დიქლორიდი TiCl3 და TiCl2 — ძლიერი აღმდგენ თვისებებიანი მყარი ნივთიერებები. Ti ურთიერთქმედებს Br2 და I2.
აზოტთან N2 400 °C-ზე მაღლა ტიტანი წარმოქმნის ნიტრიდს TiNx(x=0,58-1,00). ტიტანის ურთიერთქმედებით ნახშირბადთან წარმოიქმნება ტიტანის კარბიდი TiCx (x=0,49-1,00).
გახურებისას Ti შთანთქავს H2-ს ცვალებადი შემადგენლობის ნაერთის წარმოქმნით TiHх (x=1,0). გახურებისას ეს ჰიდრიდები იშლებიან წყალბადის H2 გამოყოფით. ტიტანი წარმოქმნის შენადნობებს მრავალ ლითონთან.
სამხედრო მრეწველობაში (ჯავშან ჟილეტები, ავიაციის ჯავშანი, წყალქვეშა ნავების კორპუსები),
სამრეწველო პროცესებში (გამამტკნარებელ დანადგარებში, ცელულოზისა და ქაღალდის დამზადების პროცესებში),
საავტომობილო მრეწველობაში,
სასოფლო სამეურნეო მრეწველობაში,
კვების მრეწველობაში, სამკაულებში პირსინგისათვის,
სამედიცინო მრეწველობაში (პროთეზები, ოსტეოპროთეზი),
სტომატოლოგიურ და ენდოდონტურ ინსტრუმენტებში,
კბილის იმპლატანტებში,
სპორტულ საქონელში,
საიუველირო ნაკეთობებში (ალექსანდრ ხომოვი),
მობილურ ტელეფონებში,
მჩატე შენადნობებში და ა.შ.
წარმოადგენს უმნიშვნელოვანეს საკონსტრუქციო მასალას ავია-, რაკეტა-, გემმშენებლობაში.
ტიტანურ ჩამოსხმას ასრულებენ ვაკუუმის ღუმელებში გრაფიტის ფორმებში ყალიბებში. ვაკუუმური ჩამოსხმა ასევე გამოიყენება გამოსადნობ მოდელებში. ტექნოლოგიური სიძნელეების გამო, მხატვრულ ჩამოსხმაში გამოიყენება ძალიან იშვიათად. მსოფლიოში პირველ ტიტანისაგან მონუმენტალურ ჩამოსხმულ სკულპტურას წარმოადგენს იური გაგარინის ძეგლი რომელიც მისი სახელობის მოედანზე დგას მოსკოვში[9].
ნიტინოლი (ნიკელი-ტიტანი) — შენადნობი, რომელსაც გააჩნია ფორმის მეხსიერება, გამოიყენება მედიცინაში და ტექნიკაში.
ტიტანის ალუმინიდი წარმოადგენს ჟანგვისადმი ძალიან მდგრად და ცეცხლგამძლეს, რამაც თავის მხვრივ განსაზღვრა მისი გამოყენების სფეროები - ავიაცია და მანქანათმშენებლობა როგორც კონსტრუქციული მასალა
ნაერთების სახით
თეთრი ტიტანის დიოქსიდი (TiO2) გამოიყენება საღებავებში (მაგალითად, ტიტანის მათეთრებელი), ასევე ქაღალდისა და პლასტიკის წარმოებაში. საკვები დანამატია - E171.