与えられた円の弦 AB および CD を含む二つの割線が、円周上にない点 P で交わるならば、線分の長さに関して AP⋅PB = CP⋅PD が満足される。
を考えよう。点 P が円の内側にある場合は『原論』の第III巻の35であるが、P が円の外側にある場合については『原論』に記述はない。しかし、ロバート・シムソンはクリストファー・クラヴィウスに従い、彼らのユークリッドについての解説書において、こんにち割線・割線定理(英語版)とも呼ばれるこの結果を示した[7]:73。
曲線上の適当な点 P において接線が存在するときには、割線はその点における曲線の接線を近似するのに用いることができる。曲線上の二点 P, Q から定まる曲線の割線について、P は固定して Q だけ動かすものと仮定する。Q が曲線に沿って P に近づくとき、割線の傾きが一定の値に近づくならば、その極限値によって点 P における接線の傾きが定まり[2]、割線 PQ は接線に限りなく近づく。微分積分学において、これが微分係数の幾何学的な定義である。
さて点 P における接線はその曲線の割線にもなり得る(点 P における接線が接点以外でその曲線と少なくとも一つの交点を持つときはそうである)。このようなことが起きる理由として、「接線である」ことは曲線上の接点 P のごく小さな近傍にだけ依存する「局所的」性質であるのに対して、「割線である」ことはその曲線を与える函数の定義域全体を調べなければならない「大域的」性質であるということを理解するのがよい。
点集合と多点割線
割線の概念はユークリッド空間よりももっと一般の設定のもとで考えることができる。何らかの幾何学的設定の下で、k 個の点からなる有限集合 K を考えるとき、与えられた直線が K の n-点割線 (n-secant) であるとは、それが K の点をちょうど n 個含むときに言う[8]:70。例えば K をユークリッド平面内の一つの円周上に並べられた50個の点の集合とするとき、それらの点の任意のふたつを結ぶ直線は二点割線 (2-secant, bisecant) であり、それらの点のひとつだけを通る直線は単点割線 (1-secant, unisecant) と言う。この例において、単点割線は基にした円の接線でなくともよいことに注意すべきである。
このような用語法は結合幾何(英語版)や離散幾何ではよく用いられる。実例として、結合幾何におけるシルヴェスター–ガライの定理は、ユークリッド幾何の n 点が共線でないならば、それら点に関する二点割線が存在しなければならないことを述べる。また、離散幾何の果樹園植栽問題(英語版)のもともとは、与えられた有限点集合の三点割線の総数の上界を求めるものであった。