マイヤーは、1926年と1927年のウィーン地方大学における講演会の際に、同僚ヴィートリスから位相幾何学を紹介され[1]、ベッチ数に対する問題の予想される結果とその解法を伝えられて、1929年にその問題を解いている[2]。マイヤーはその結果を、二つの円筒の和として見たときのトーラスに適用した[3][4]。その後の1930年に、ヴィートリスはトーラスのホモロジー群についての完全な結果を示しているが、それは完全列として表されたものではなかった[5]。完全系列の概念が出版物に現れるのは、1952年にアイレンバーグとスティーンロッドが著した書籍 Foundations of Algebraic Topology(「代数的位相幾何学の基礎」)においてであり[6]、それにはマイヤーとビートリスの結果が現代的な形で記されている[7]。
基本形
位相空間X と、その部分空間 A, B はそれらの内部が X を被覆するもの(A, B の内部が互いに素である必要はない)とするとき、三つ組 (X, A, B) に対する特異ホモロジーのマイヤー・ヴィートリス完全系列は、空間 X, A, B および交わり A∩B に関する(整係数)特異ホモロジー群からなる長完全系列で、簡約版と非簡約版がある[8]。
非簡約版
非簡約ホモロジーに対するマイヤー・ヴィートリス完全系列は、以下の系列
が完全であることを主張するものである[9]。ここで、写像 i: A∩B ↪ A, j: A∩B ↪ B, k: A ↪ X, l: B ↪ X は何れも包含写像で、⊕ はアーベル群の直和を表す。
境界写像(連結準同型)
境界写像 ∂* が次元を下げることは、以下のように明示的に説明することができる[10]。Hn(X) の各元は n-輪体 x の属するホモロジー類であり、各 x は(例えば重心細分によって)像が完全にそれぞれ A および B に含まれる二つの n-鎖 u および v の和として書くことができて、∂x = ∂(u + v) = 0, 即ち ∂u = −∂v が成り立つ。このことは、各鎖の境界である (n − 1)-輪体の像が共に、交わり A ∩ B に含まれることを意味する。従って ∂*([x]) Hn−1(A ∩ B) に属する ∂u のホモロジー類である。x とは別の代表元 x′ をとった場合でも(∂x′ = ∂x = 0 だから)∂u は変わらないし、別の分解 x = u′ + v′ をとった場合でも(∂u + ∂v − ∂u′ − ∂v′ = 0 から)∂u = ∂u′ および ∂v = ∂v′ が言える。ただし、マイヤー・ビートリス完全系列における境界写像が A と B の順番には依存することには注意が必要である。特に、A と B の順番を入れ替えると境界写像の符号が反転する。
簡約版
簡約ホモロジーに対しても、A, B の交わりが空でないという仮定の下でマイヤー・ヴィートリス完全系列が存在する[11]。これは正の次元のホモロジーのなす端点を持つ系列
k-次元球面X = Sk のホモロジーをきちんと計算するために、A および B をそれらの交わりが (k − 1)-次元赤道球面にホモトピー同値な X の二つの半球面とする。k-次元半球面は k-次元円板にホモトピックで、これは可縮だから、A および B のホモロジー群は自明である。簡約ホモロジー群に対するマイヤー・ビートリス完全系列から
このように球面のホモロジー群は完全にわかっており、今のところ知られている球面のホモトピー群の場合(特に n > k の場合には殆ど知られていない)とは対照的である[15]。
クラインの壷
マイヤー・ヴィートリス完全系列のもう少しだけ難しい応用として、クラインの壷X のホモロジー群の計算を挙げよう。二つのメビウスの帯A, B をそれらの境界円にそって貼合せた和として X を分解すれば、A, B およびそれらの交わり A ∩ B は円にホモトピー同値であるから、マイヤー・ヴィートリス完全系列の非自明な部分は
位相空間 X を二つの空間 K および L の一点和 (wedge sum) とし、さらにそれらの同一視された基点は U ⊂ K および V ⊂ L なる開近傍の変位レトラクトであるものとする。 このとき A := K ∪ V および B = U ∪ L とおけば A ∪ B = X かつ A ∩ B = U ∪ V で、後者は作り方から可縮である。簡約版のマイヤー・ヴィートリス完全系列から(その完全性により)各次元 n に対して
が導かれる[17]。図に示すように X が二つの二次元球面 K と L の和であるような場合、上掲の結果を代入して
と計算できる。
懸垂空間
位相空間 X が別の空間 Y の懸垂SY のとき、A および B をそれぞれ二重錐の上点 (top vertex) および下点 (bottom vertex) の X における補集合ととれば、X は共に可縮な A, B の和 A ∪ B として書けて、交わり A ∩ B は Y にホモトピー同値であるから、マイヤー・ヴィートリス完全系列により、各 n に対して
を得る[18]。図は一次元球面 X を零次元球面 Y の懸垂と見たものだが、一般に k-次元球面は (k − 1)-次元球面の懸垂になっており、上掲の球面のホモロジー群を帰納法によって導くことも容易である。
更に進んだ議論
相対版
相対ホモロジー版のマイヤー・ヴィートリス完全系列も存在する。部分空間 Y ⊂ X が C ⊂ A および D ⊂ B の和であるとき、相対版マイヤー・ヴィートリス完全列は
係数群 G を持つ特異コホモロジーに対するマイヤー・ヴィートリスの長完全系列は、ホモロジー版の双対であり、
で与えられる[22]。ここで、次元を保つ写像は包含写像から誘導された制限写像であり、(双対)境界写像はホモロジー版のときと同様にして定義される。さらにこの相対版の定式化も同様にできる。
重要な意味を持つ特別な場合としては、係数群 G が実数全体の成す加法群 R で、考える位相空間がさらに可微分多様体の構造を持つような場合であって、このときド・ラームコホモロジーに対するマイヤー・ヴィートリス完全系列は
と書ける。ただし {U, V} は X の開被覆、ρ は制限写像、Δ は差であり、また双対境界写像 d∗ は上で述べた境界写像 ∂∗ と同様に定められる。この完全系列は以下のように簡潔に述べることもできる。例えば交わり U ∩ V における閉微分形式 ω で表されるコホモロジー類 [ω] に対して、開被覆 {U, V} に従う 1 の分割を通じて ω を ωU - ωV の形の差に表せば、外微分dωU および dωV は U ∩ V 上で一致し、それ故ともに X 上の或る (n + 1)-形式 σ を定めるが、このとき d∗([ω]) = [σ] が成り立つ。
導出について
α(x) = (x, −x), β(x, y) = x + y および Cn(A + B) は A の鎖と B の鎖の和からなるものとして、鎖群(鎖複体を構成する群)の成す短完全列[9]
に付随する長完全列を考える。事実として、X の特異 n-単体で像が A か B の何れかに含まれるようなもの全体はホモロジー群 Hn(X) を生成する[23]。即ち、Hn(A + B) は Hn(X) に同型である。この事実が特異ホモロジーに対するマイヤー・ヴィートリス完全系列を与えるのである。
同じ計算を微分形式の成すベクトル空間の短完全列