エルウィン・ブルーノ・クリストッフェル
エルウィン・ブルーノ・クリストッフェル (Elwin Bruno Christoffel, 1829年 11月10日 - 1900年 3月15日 )は、ドイツ の数学者 、物理学者 。彼は微分幾何学 に基礎的な概念を導入し、後に一般相対性理論 の数学的基礎を提供するテンソル 計算の開発への道を開いた。
生涯
クリストッフェルは、1829年 11月10日にプロイセン王国 のモンジョワ(Montjoie; 現在のモンシャウ )で、布商人の子供として生まれた。彼ははじめ自宅で語学と数学の教育を受けたあと、ケルン のイエズス会 のギムナジウム とフリードリヒ・ヴィルヘルム のギムナジウム に通った。1850年にはベルリン大学 に入学し、特にペーター・グスタフ・ディリクレ (クリストッフェルに強い影響を与えた)[ 1] から数学を学び、また物理と化学の課程にも参加した。1856年にはベルリン大学 で、Martin Ohm (ゲオルク・オーム の弟)、エルンスト・クンマー 、ハインリヒ・グスタフ・マグヌス の指導の下、均質な物体中の電気の振る舞いに関する論文で博士号を取得した[ 2] 。
博士号取得後、クリストッフェルはモンジョワに戻り、その後3年間、学界から孤立して過ごした。しかしながら、彼はベルンハルト・リーマン 、ディリクレ 、そしてオーギュスタン=ルイ・コーシー の本で数学(特に数理物理学)は学び続けていた。また研究も続けており、微分幾何学に関する2つの論文を発表した[ 2] 。
1859年には、クリストッフェルはベルリンに戻り、教授資格(habilitation)を取得し、ベルリン大学で員外講師(Privatdozent)となった。1862年にはリヒャルト・デーデキント がチューリッヒ工科大学 を去ったことによって空いたポストを得た。彼はわずか7年前に設立された若い研究機関に新しい数学の協会を組織し、高く評価された。彼はまた研究を発表することを継続し、1868年にはプロイセン科学アカデミー と ミラノ のIstituto Lombardoの準会員に選出された。1869年、クリストッフェルは工業専門学校(Gewerbeakademie;現在のベルリン工科大学 の一部)の教授としてベルリンに戻り、チューリッヒ工科大学 の彼の後任としてはヘルマン・アマンドゥス・シュヴァルツ が就いた。しかしながら、極めて近接しているベルリン大学 との激しい競争により、工業専門学校は高等数学コースを維持するための十分な学生を引きつけることができず、クリストッフェルは3年後にまたベルリンを離れた[ 2] 。
1872年、クリストッフェルはストラスブール大学 で教授となった。ストラスブール大学は、普仏戦争 でプロシア がアルザス=ロレーヌ を併合した後、近代的な大学に再編された数世紀に渡る歴史をもつ研究機関である。クリストッフェルは、同僚のTheodor Reye と共に、ストラトブールで信頼性の高い数学科を作った。彼は研究を発表し続けており、藤沢利喜太郎 、Ludwig Maurer 、Paul Epstein を含む数人の博士課程学生がいた。クリストっフェルは1894年にストラスブール大学を退職し、後任にはHeinrich Martin Weber が就いた[ 2] 。引退後も彼は仕事と出版を続け、最後の論文は死の直前に完成し、死後に出版された[ 1] 。
クリストッフェルは1900年3月15日にストラスブールで亡くなった。彼は一度も結婚したことがなく、残した家族もいなかった[ 2] 。
業績
クリストッフェルの業績には、等角写像 、ポテンシャル論 、不変式 の理論、テンソル解析 、数理物理学 、測地学 、衝撃波 に関するものがある。クリストッフェル記号 やシュワルツ=クリストッフェル写像 は彼にちなんで名づけられたものである。
微分幾何学(テンソル解析)
クリストッフェルは主に微分幾何学 への独創的な貢献によって知られる。クレレ誌 に掲載された、n変数の微分形式 に対する等価性問題に関する有名な1869年論文[ 3] において、彼は後に共変微分 と呼ばれる基本的な技法を導入し、それを用いてリーマン=クリストッフェルのテンソル (リーマン多様体 の曲率を表現することに使われる最も一般的な方法)を定義した。同論文において、彼は局所座標系に関するレヴィ=チヴィタ接続 の成分を表現しているクリストッフェル記号
Γ Γ -->
k
i
j
{\displaystyle \Gamma _{kij}}
と
Γ Γ -->
i
j
k
{\displaystyle \Gamma _{ij}^{k}}
を導入した。クリストッフェルのアイディアは、グレゴリオ・リッチ=クルバストロ と彼の学生であるトゥーリオ・レヴィ=チヴィタ によって一般化され大きく発展した。彼らはそれらアイディアをテンソル と絶対微分学 の概念に転換させた。後にテンソル解析 と呼ばれることになる絶対微分学は、一般相対性理論 の数学的基礎を形成することとなった[ 2] 。
複素解析(等角写像)
クリストッフェルは複素解析の分野に貢献した。複素解析におけるシュワルツ=クリストッフェル写像 はリーマンの写像定理 の最初の非自明で構成的な応用である。シュワルツ=クリストッフェル写像は楕円関数論 や物理学の領域ににおいて多くの応用を持つ[ 2] 。楕円関数の分野において、彼はアーベル積分 とテータ関数 に関する結果も出版した。
数値解析
クリストッフェルは積分のためのガウス求積法 を一般化した。これに関連したものとして、彼はまたルジャンドル多項式 のためのクリストッフェル=ダルブー式 を導入し[ 4] 、後に一般化した直交多項式 のための式も発表した。
数理物理学(ポテンシャル論、光学、衝撃波)
クリストッフェルはまたポテンシャル論 と微分方程式 の理論においても仕事を行った。しかしながら、これら領域における彼の研究の多くは注目されなかった。彼は衝撃波 の理論における先駆的な仕事であることを示す偏微分方程式の解の不連続性の伝搬に関する2つの論文を出版した。彼は物理も学び光学 に関する研究を出版した。しかしながら、この分野での彼の貢献は、光エーテル の概念の放棄によって、すぐさま有用性を失った[ 2] 。
受賞歴
クリストッフェルは次のいくつかのアカデミーの準会員に選出された。
クリストッフェルはまたプロイセン王国 から彼の活動に対して2つの異なる賞を授与された。
代表的論文
年表
脚注
^ a b Windelband, Wilhelm (1901). “Zum Gedächtniss Elwin Bruno Christoffel's” (ドイツ語) (PDF ). Mathematische Annalen 54 (3): 341–344. doi :10.1007/bf01454257 . http://archiv.ub.uni-heidelberg.de/volltextserver/17403/ 2015年10月6日 閲覧。 .
^ a b c d e f g h Butzer, Paul L. (1981). “An Outline of the Life and Work of E. B. Christoffel (1829–1900)”. Historia Mathematica 8 (3): 243–276. doi :10.1016/0315-0860(81)90068-9 .
^ Christoffel, E.B. (1869), “Ueber die Transformation der homogenen Differentialausdrücke zweiten Grades” , Journal für die Reine und Angewandte Mathematik B. 70 (70): 46–70, doi :10.1515/crll.1869.70.46 , http://gdz.sub.uni-goettingen.de/dms/load/img/?PPN=GDZPPN002153882&IDDOC=266356
^ Christoffel, E. B. (1858), “Über die Gaußische Quadratur und eine Verallgemeinerung derselben” (ドイツ語), Journal für die Reine und Angewandte Mathematik 1858 (55): 61–82, doi :10.1515/crll.1858.55.61 , ISSN 0075-4102 , http://resolver.sub.uni-goettingen.de/purl?GDZPPN002150239
参考文献