Numero di Skewes

Nella teoria dei numeri, il termine numero di Skewes indica il più piccolo numero naturale x per il quale vale l'espressione

dove π (x) è la funzione enumerativa dei primi (cioè il numero di primi esistenti fino al numero x), e Li (x) è la funzione logaritmo integrale.

In pratica si tratta del più piccolo numero (che si è rivelato essere estremamente grande) per il quale π (x) risulta maggiore di Li (x).

L'esistenza di tale numero fu ipotizzata nel 1914 dal matematico John Littlewood, ma solo nel 1932 ne diede una dimostrazione. Littlewood provò anche che il segno della differenza π (x) – Li (x) cambia infinitamente spesso. Che tale numero esistesse non era affatto chiaro; infatti, l'evidenza numerica allora disponibile sembrava suggerire che π (x) fosse sempre minore di Li (x).[1]

La dimostrazione di Littlewood, comunque, non fornì un esempio concreto del numero x; non era dunque un risultato costruttivo. Il matematico sudafricano Stanley Skewes, che era un allievo di Littlewood a Cambridge, nel 1933 dimostrò che, assumendo come vera l'ipotesi di Riemann, esiste un numero x per il quale π (x) > Li (x), inferiore a

(chiamato talvolta primo numero di Skewes), che è approssimativamente uguale a

[2]

Nel 1955, senza l'assunzione che l'ipotesi di Riemann sia vera, Skewes dimostrò che deve esistere un valore di x inferiore a

(chiamato talvolta secondo numero di Skewes).

Questi (enormi) estremi superiori sono stati in seguito ridotti considerevolmente. Senza assumere come vera l'ipotesi di Riemann, Herman te Riele nel 1987 trovò un estremo superiore di

7×10370

Una approssimazione migliore è 1,39822×10316, scoperta da Bays e Hudson (2000). Il miglior valore per il primo attraversamento di zero è ora 1,397162914×10316 (Demichel, 2005). Questo è, con un intervallo di confidenza molto elevato, il primo caso per cui si verifica π (x) > Li (x).

Note

  1. ^ Ancora oggi il valore più grande di Li (x) calcolato, per x = 1024, è nettamente superiore al valore corrispondente di π (x).
  2. ^ Si tratta di un numero con cifre (vale a dire 8,85 milioni di miliardi di miliardi di miliardi di cifre). Un numero così immensamente grande è molto al di là della portata dei computer più potenti e avanzati. Volendo scrivere per esteso tale numero usando un comune blocco note a quadretti e inserendo una cifra per quadretto, si può calcolare che servirebbe un volume di carta di 1,78×1014 km³, pari al volume di un cubo con lato di circa 121000 km

Bibliografia

  • J.E. Littlewood, "Sur la distribution des nombres premiers", Comptes Rendus 158 (1914), pp. 1869-1872
  • S. Skewes, "On the difference π(x) – Li(x)", Journal of the London Mathematical Society 8 (1933), pp. 277-283
  • S. Skewes, "On the difference π(x) – Li(x) (II)", Proceedings of the London Mathematical Society 5 (1955), pp. 48–70
  • H.J.J. te Riele, "On the difference π(x) – Li(x)", Math. Comp. 48 (1987), pp. 323-328

Collegamenti esterni

  Portale Matematica: accedi alle voci di Wikipedia che trattano di matematica

Read other articles:

Kowak melayu Status konservasi Risiko Rendah (IUCN 3.1)[1] Klasifikasi ilmiah Kerajaan: Animalia Filum: Chordata Kelas: Aves Ordo: Pelecaniformes Famili: Ardeidae Genus: Gorsachius Spesies: G. melanolophus Nama binomial Gorsachius melanolophusRaffles, 1822 Kowak melayu (Gorsachius melanolophus) adalah spesies burung dalam famili Ardeidae. Burung ini tersebar di India, China selatan, Asia Tenggara, dan Filipina. Pada musim dingin, bermigrasi ke selatan sampai ke Sunda Besar....

 

 

Pour les articles homonymes, voir Académie des sciences. Académie des sciencesColbert présente à Louis XIV les membres de l'Académie royale des sciences en 1667.HistoireFondation 22 décembre 1666CadreType Académie des sciencesForme juridique Établissement public national à caractère administratifDomaine d'activité biologie, chimie, informatique, mathématiques, mécanique, médecine, physique, sciences de l'univers.Siège Paris (75006)Pays  FranceCoordonnées 48° 51′&...

 

 

Compounds having a fully conjugated cyclic dione structure Quinones redirects here. Not to be confused with Quiñones, Quinine, or Hydroquinone. The quinones are a class of organic compounds that are formally derived from aromatic compounds [such as benzene or naphthalene] by conversion of an even number of –CH= groups into –C(=O)– groups with any necessary rearrangement of double bonds, resulting in a fully conjugated cyclic dione structure.[1][2][3] The archety...

Baroque oboe, Stanesby copy The Oboe sonata in C minor (HWV 366) was composed (c. 1711–1712) by George Frideric Handel for oboe and basso continuo. The work is also referred to as Opus 1 No. 8, and was first published in 1732 by Walsh. Other catalogues of Handel's music have referred to the work as HG xxvii, 29; and HHA iv/18,32.[1] Both the Walsh edition and the Chrysander edition indicate that the work is for oboe (Hoboy), and published it as Sonata VIII. A typical performance of...

 

 

Not to be confused with CECAFA Kagame Cup. Football tournamentCECAFA CupOrganising bodyCECAFAFounded1926RegionAfricaNumber of teams9Current champions Uganda (40 title)Most successful team(s) Uganda (40 titles)Websitececafaonline.com 2021 CECAFA U-23 Challenge Cup The CECAFA Cup, formerly the Gossage Cup (1926–1966) and the East and Central African Senior Challenge Cup (1967–1971), is the oldest football tournament in Africa. It is organized by the Council for East and Central Af...

 

 

Guo Moruo Guo Moruo adalah nama pena dari sejarawan, penulis, penyair, arkeologis dan pejabat dari Sichuan, Cina Guo Kaizhen.[1] Ia lahir di Shawan, Leshan, provinsi Sichuan, Cina pada bulan November 1892 dan meninggal di Beijing 12 Juni 1978.[2] Sebagai penyair ia dikenal lewat kumpulan puisinya berjudul Sang Dewi (女神) yang termasuk puisi bebas.[1] Dalam bidang ilmu sejarah ia dikenal lewat karyanya Zhongguo gu dai she hui yan jiu (中国古代社会硏究) [3...

Governor of Alabama since 2017 Kay IveyIvey in 201754th Governor of AlabamaIncumbentAssumed office April 10, 2017LieutenantVacant (2017–2019)Will Ainsworth (2019–present)Preceded byRobert J. Bentley30th Lieutenant Governor of AlabamaIn officeJanuary 17, 2011 – April 10, 2017GovernorRobert J. BentleyPreceded byJim Folsom Jr.Succeeded byWill Ainsworth38th Treasurer of AlabamaIn officeJanuary 20, 2003 – January 17, 2011GovernorBob RileyPreceded byLucy BaxleySucceede...

 

 

سيمون سبيلاك معلومات شخصية الميلاد 23 يونيو 1986 (العمر 37 سنة)سلوفينيا الطول 1.76 م (5 قدم 9 بوصة)* الجنسية  سلوفينيا الوزن 68 كـغ (150 رطل؛ 10.7 ستون) الحياة العملية الدور دراج الفرق فريق الإمارات (2008–2011)كاتوشا (2012–2019)أدريا موبيل  [لغات أخرى]‏ (2005–2007)  المه�...

 

 

Frank Ferrer Nazionalità Stati Uniti GenereHard rockHeavy metal Periodo di attività musicale1986 – in attività Strumentobatteria Gruppi attualiGuns N'Roses Gruppi precedentiThe Dead Daisies Sito ufficiale Modifica dati su Wikidata · Manuale Frank Ferrer (New York, 25 marzo 1966) è un batterista statunitense. Nell'ottobre del 2006 è diventato membro ufficiale dei Guns N' Roses, dopo aver sostituito il batterista Bryan Mantia in numerose occasioni durante i ...

1991 single by Reba McEntireFor My Broken HeartSingle by Reba McEntirefrom the album For My Broken Heart B-sideBobbyReleasedSeptember 30, 1991GenreCountryLength4:18 (album version)LabelMCASongwriter(s)Keith Palmer, Liz Hengber[1]Producer(s)Tony Brown and Reba McEntireReba McEntire singles chronology Fallin' Out of Love (1991) For My Broken Heart (1991) Is There Life Out There (1992) For My Broken Heart is a song written by Keith Palmer and Liz Hengber, and recorded by American country...

 

 

American geriatrician C. Ward CramptonBorn26 May 1877Died20 October 1964South MiamiOccupationGeriatrician Charles Ward Crampton (26 May 1877 – 20 October 1964) was an American geriatrician, physical culturist and advocate of preventive healthcare. Crampton was educated at City College and New York University and graduated in 1900 from the College of Physicians and Surgeons.[1] He was a teacher of physical training at DeWitt Clinton High School and managed the physical training depar...

 

 

American baseball player (1918–1958) Baseball player Snuffy StirnweissStirnweiss in 1948Second basemanBorn: (1918-10-26)October 26, 1918New York City, New York, U.S.Died: September 15, 1958(1958-09-15) (aged 39)Newark Bay, New Jersey, U.S.Batted: RightThrew: RightMLB debutApril 22, 1943, for the New York YankeesLast MLB appearanceMay 3, 1952, for the Cleveland IndiansMLB statisticsBatting average.268Home runs29Runs batted in281 Teams New York Yankees (1943...

Ferme du ChanteletL'entrée de la ferme, flanquée de la chapelle du ChanteletPrésentationDestination initiale FermeDestination actuelle FermeStyle architecture ruraleLocalisationPays BelgiqueProvince  Province du Brabant wallonCommune GenappeCoordonnées 50° 39′ 01″ N, 4° 26′ 03″ E Géolocalisation sur la carte : Belgique Géolocalisation sur la carte : Brabant wallon Géolocalisation sur la carte : champ de bataille de Waterloo mo...

 

 

This article needs additional citations for verification. Please help improve this article by adding citations to reliable sources. Unsourced material may be challenged and removed.Find sources: Finnish nobility – news · newspapers · books · scholar · JSTOR (September 2022) (Learn how and when to remove this message) The Diet of Finland in 1863. Grand Duke of Finland, Emperor of Russia Alexander II opened the Diet in Helsinki. Grand Duchy of Finland ar...

 

 

Endonym used to refer to Protestant groups in Ethiopia and Eritrea P'ent'ay (ጴንጤ) Wenigēlawī (ወንጌላዊ)TypeEastern ChristianityClassificationEastern Protestant ChristianOrientationPentecostal, Lutheran, Baptist, Mennonite, Anglican, Adventist, Holiness, Methodist, PresbyterianPolityCongregationalist and PresbyterianRegionEthiopia, Eritrea, United States, Canada, Norway, Sweden, Finland, Denmark, Germany, United Kingdom, Israel, Kenya, Australia, and other parts of the Ethiopian...

Municipal area Midtown Omaha looking west from the Park East neighborhood of Downtown Omaha. Midtown is a geographic area of Omaha, Nebraska that is a culturally, socially and economically important area of the city. It is home to major research centers, national corporations, several historic districts, and a number of historic residences. About Midtown comprises 1.36 square miles (3.5 km2) and is bordered on the north by Davenport Street, the south by Pacific Street, the east by I-480,...

 

 

هذه المقالة بحاجة لصندوق معلومات. فضلًا ساعد في تحسين هذه المقالة بإضافة صندوق معلومات مخصص إليها. قائمة الجزر في الخليج العربي يحوي الخليج العربي على ما يزيد من 100 جزيرة أكبرها جزيرة قشم ثم بوبيان الكويتية، ولجميع الدول المطلة على الخليج جزر ما عدا العراق.[1] يعد الخليج...

 

 

هذه المقالة تحتاج للمزيد من الوصلات للمقالات الأخرى للمساعدة في ترابط مقالات الموسوعة. فضلًا ساعد في تحسين هذه المقالة بإضافة وصلات إلى المقالات المتعلقة بها الموجودة في النص الحالي. (يوليو 2019) منتخب ليتوانيا لهوكي الحقل للسيدات البلد ليتوانيا  التصنيف بوابة المرأة بوا...

Paul Delaroche, potret oleh Eugène-Ferdinand Buttura Hippolyte de la Roche[1] atau Paul Delaroche (17 Juli 1797 – 4 November 1856) merupakan seorang pelukis berkebangsaan Prancis yang mencapai kesuksesannya yang lebih besar dengan melukis adegan sejarah. Ia terkenal di Eropa karena penggambaran melodramatiknya yang sering menggambarkan subjek dari sejarah Inggris dan Prancis. Referensi ^ disebut juga Robert kecil. Sumber Bann, Stephen. 1997. Paul Delaroche: History Painted. London:...

 

 

Voce principale: Giochi della XXX Olimpiade. Tuffi a Londra 2012 Trampolino 3m   uomini   donne Piattaforma 10m   uomini   donne Sincro trampolino 3m   uomini   donne Sincro piattaforma 10m   uomini   donne Il London Aquatics Centre ha ospitato i concorsi dei tuffi. Le gare di tuffi dei Giochi della XXX Olimpiade si sono svolte tra il 29 luglio e l'11 agosto 2012 al London Aquatics Centre. Sono state disputate 8 concorsi, quattro maschili e quattro fem...