Nitrato di magnesio

Nitrato di magnesio
Modello 3D della molecola
Modello 3D della molecola
Nome IUPAC
Nitrato di magnesio
Caratteristiche generali
Formula bruta o molecolareMg(NO3)2 (anidro)

Mg(NO3)2 · 2H2O (diidrato)
Mg(NO3)2 · 6H2O (esaidrato)

Massa molecolare (u)148.30 g/mol (anidro)

184.33 g/mol (diidrato)
256.41 g/mol (esaidrato)

Aspettosolido bianco cristallino
Numero CAS10377-60-3 (anidro)
15750-45-5 (diidrato)

13446-18-9 (esaidrato)

Numero EINECS233-826-7
PubChem25212
SMILES
[N+](=O)([O-])[O-].[N+](=O)([O-])[O-].[Mg+2]
Proprietà chimico-fisiche
Densità (g/cm3, in c.s.)2.3 g/cm3 (anidro)

2.0256 g/cm3 (diidrato)
1.464 g/cm3 (esaidrato)

Indice di rifrazione1.34 (esaidrato)
Solubilità in acqua125 g/100 mL
Temperatura di fusione129 °C (diidrato)

88.9 °C (esaidrato)

Indicazioni di sicurezza
Simboli di rischio chimico
Irritante
Frasi RR8, R36, R37, R38
Frasi SS17, S26, S36

Il nitrato di magnesio è un sale igroscopico. È facilmente solubile sia in acqua che in etanolo. Può esistere in tre forme differenti: come anidro, come diidrato e come esaidrato. Viene usato come fertilizzante. Si presenta naturalmente solo nelle miniere e nelle caverne come nitromagnesite (forma di esaidrato).[1]

Sintesi

Il nitrato di magnesio può essere ottenuto in molti modi, i più comuni dei quali sono la reazione di ossidoriduzione tra acido nitrico e magnesio metallico,

la reazione tra acido nitrico e ossido di magnesio

e la reazione tra idrossido di magnesio e nitrato di ammonio

Reattività

Il nitrato di magnesio anidro in ambiente umido si converte velocemente nell'esaidrato corrispondente di formula Mg(NO3)2 · 6H2O. Il nitrato di magnesio esaidrato se portato alla temperatura di 330 °C non fonde, bensì va incontro a decomposizione:

2Mg(NO3)2Δ→ 2MgO + 4NO2 + O2

Note

Voci correlate

Altri progetti

Read other articles:

Antoine Alfred Agénorduc de GramontLahir(1819-08-14)14 Agustus 1819ParisMeninggal17 Januari 1880(1880-01-17) (umur 60)PekerjaandiplomatBahasaPrancisKebangsaanPrancisAlmamaterPoliteknik École Antoine Alfred Agénor, Duc de Gramont ke-10, Pangeran de Bidache, dll. (14 Agustus 1819 - 17 Januari 1880) merupakan seorang diplomat dan negarawan Prancis. Kehidupan Ia lahir di Paris dari salah satu keluarga paling diilustrasikan dari bangsawan lama, sebuah cabang kadet dari para viscount Aure, ...

 

Senate elections for the 135th Ohio General Assembly Not to be confused with 2022 United States House of Representatives elections in Ohio. 2022 Ohio House of Representatives election ← 2020 November 8, 2022 2024 → All 99 seats in the Ohio House of Representatives50 seats needed for a majority   Majority party Minority party   Leader Robert R. Cupp(term-limited) Allison Russo Party Republican Democratic Leader's seat 78th district 7th district Seats b...

 

Economic think tank favoring Chicago school Mont Pelerin SocietyAbbreviationMPSFormation1947; 77 years ago (1947)TypeEconomic policy think tankHeadquartersTexas Tech University, Lubbock, Texas, U.S.PresidentVacant(Gabriel Calzada, Guatemala (Acting President, December 2021–Present))Revenue (2015) $165,781[1]Expenses (2015)$113,886[1]Websitemontpelerin.org The Mont Pelerin Society (MPS), founded in 1947, is an international organization of economists, philos...

Soyuz MS-21Soyuz MS-21 merapat dengan ISSNamaISS 66SJenis misiMisi berawak ke ISSOperatorRoscosmosCOSPAR ID2022-028ASATCAT no.52086Situs webhttp://en.roscosmos.ru/Durasi misi195 hari (direncanakan) 23 hari (sedang berlangsung) Properti wahanaJenis wahana antariksaSoyuz MS No.750 KorolyovBusSoyuz MSProdusenRKK Energia AwakJumlah awak3AwakOleg Artemyev Denis Matveev Sergey KorsakovTanda panggilDon (Дон) Awal misiTanggal luncurMaret 2022, 15:55:18 UTC[1][2]Roket peluncurSoyuz-...

 

2021 single by Kodak Black SenselessSingle by Kodak BlackReleasedJuly 29, 2021Length2:23Label Sniper Gang Atlantic Songwriter(s) Bill Kapri Tyron Douglas Producer(s)Buddah BlessKodak Black singles chronology Grah Tah Tah (2021) Senseless (2021) Aug 25th (2021) Music videoSenseless on YouTube Senseless is a song by American rapper Kodak Black, released as a single on July 29, 2021.[1] Produced by Buddah Bless, it contains an interpolation of Make No Sense by YoungBoy Never Broke Again....

 

This article does not cite any sources. Please help improve this article by adding citations to reliable sources. Unsourced material may be challenged and removed.Find sources: Lambert Schaus – news · newspapers · books · scholar · JSTOR (December 2009) (Learn how and when to remove this message) Lambert SchausAmbassador to the North Atlantic Treaty OrganisationIn office1967–1973Preceded byPaul ReuterSucceeded byMarcel FischbachEuropean Commissioner...

Giuseppe Saracco Perdana Menteri ItaliaMasa jabatan24 Juni 1900 – 15 Februari 1901Penguasa monarkiUmberto I Victor Emmanuel IIIPendahuluLuigi PellouxPenggantiGiuseppe Zanardelli Informasi pribadiLahir6 Oktober 1821BistagnoMeninggal9 Januari 1907(1907-01-09) (umur 85)BistagnoSunting kotak info • L • B Giuseppe Saracco (6 Oktober 1821 – 19 Januari 1907) adalah seorang politisi Italia yang pernah menjadi Perdana Menteri Italia antara 24 Juni 1900 hin...

 

Co-op apartment building in Manhattan, New York 257 Central Park WestThe profile from the 86th Street transverse of Central ParkLocation on the Upper West SideFormer namesOrwell House, Peter Stuyvesant Hotel, Central Park View, 2 West 86th StreetGeneral informationArchitectural styleBeaux ArtsLocationManhattan, NY 10024Address257 Central Park WestCountryU.S.Coordinates40°47′06″N 73°58′11″W / 40.78500°N 73.96972°W / 40.78500; -73.96972Groundbreaking1905Comp...

 

صبغي 13زوج صبغي 13 بشري (بعد ارتباط جي).واحد من الأم والآخر من الأب.زوج الصبغي 13 لرجل كما تظهر بواسطة الكاريوغرام.المواصفاتالطول (زوج قواعد)114,364,328 bpعدد المورثات993النوعصبغي جسميموقع القطعة المركزية[[قسيم مركزي#{{{centromere position}}}|طرفي]][1]المعرفاتقاعدة بيانات مرجعيةNC_000013بنك الج�...

この記事は検証可能な参考文献や出典が全く示されていないか、不十分です。出典を追加して記事の信頼性向上にご協力ください。(このテンプレートの使い方)出典検索?: コルク – ニュース · 書籍 · スカラー · CiNii · J-STAGE · NDL · dlib.jp · ジャパンサーチ · TWL(2017年4月) コルクを打ち抜いて作った瓶の栓 コルク(木栓、�...

 

Italian association football club based in Sassuolo Football clubSassuoloFull nameUnione Sportiva SassuoloCalcio S.r.l.Nickname(s)I Neroverdi (The Black and Greens)The Watermelon PeelFounded1920; 104 years ago (1920)GroundMapei Stadium – Città del TricoloreCapacity21,584[1]OwnerMapeiChairmanCarlo Rossi Giovanni CarnevaliHead coachDavide BallardiniLeagueSerie A2022–23Serie A, 13th of 20WebsiteClub website Home colours Away colours Current season Unione Sportiva S...

 

Labeling systems for food and consumer products Green label redirects here. For the online magazine, see Green Label. Classification of eco-labels Ecolabels (also Eco-Labels) and Green Stickers are labeling systems for food and consumer products. The use of ecolabels is voluntary, whereas green stickers are mandated by law; for example, in North America major appliances and automobiles use Energy Star. They are a form of sustainability measurement directed at consumers, intended to make it ea...

Cet article est une ébauche concernant les Jeux olympiques et l’Estonie. Vous pouvez partager vos connaissances en l’améliorant (comment ?) selon les recommandations des projets correspondants. Estonie aux Jeux olympiques d'été de 2008 Code CIO EST Lieu Pékin Participation 10e Athlètes 47 dans 13 sports Porte-drapeau Martin Padar MédaillesRang : 47 Or1 Arg.1 Bron.0 Total2 Estonie aux Jeux olympiques d'été Estonie aux Jeux olympiques d'été de 2004 Estonie aux Jeux oly...

 

1940 United States Supreme Court caseUnited States v. Socony-Vacuum Oil Co.Supreme Court of the United StatesArgued February 5–6, 1940Decided May 6, 1940Full case nameUnited States v. Socony-Vacuum Oil Co.Citations310 U.S. 150 (more)60 S. Ct. 811; 84 L. Ed. 1129Case historyPrior23 F. Supp. 937 (W.D. Wis. 1938); reversed, 105 F.2d 809 (7th Cir. 1939); cert. granted, 308 U.S. 540 (1939).HoldingPrice-fixing is illegal per se.Court membership Chief Justice Charles E. Hughes Associate J...

 

هنودمعلومات عامةنسبة التسمية الهند التعداد الكليالتعداد قرابة 1.21 مليار[1][2]تعداد الهند عام 2011ق. 1.32 مليار[3]تقديرات عام 2017ق. 30.8 مليون[4]مناطق الوجود المميزةبلد الأصل الهند البلد الهند  الهند نيبال 4,000,000[5] الولايات المتحدة 3,982,398[6] الإمار...

安倍晋太郎安倍晋太郎(攝於1987年4月21日) 日本第112、113任外務大臣任期1982年11月27日—1986年7月22日总理中曾根康弘前任櫻内義雄继任倉成正 日本第42任通商產業大臣任期1981年11月30日—1982年11月27日总理鈴木善幸前任田中六助(日语:田中六助)继任山中貞則 日本第41任内閣官房長官任期1977年11月28日—1978年12月7日总理福田赳夫前任園田直继任田中六助(日语�...

 

此條目可能包含不适用或被曲解的引用资料,部分内容的准确性无法被证實。 (2023年1月5日)请协助校核其中的错误以改善这篇条目。详情请参见条目的讨论页。 各国相关 主題列表 索引 国内生产总值 石油储量 国防预算 武装部队(军事) 官方语言 人口統計 人口密度 生育率 出生率 死亡率 自杀率 谋杀率 失业率 储蓄率 识字率 出口额 进口额 煤产量 发电量 监禁率 死刑 国债 ...

 

此條目可能包含不适用或被曲解的引用资料,部分内容的准确性无法被证實。 (2023年1月5日)请协助校核其中的错误以改善这篇条目。详情请参见条目的讨论页。 各国相关 主題列表 索引 国内生产总值 石油储量 国防预算 武装部队(军事) 官方语言 人口統計 人口密度 生育率 出生率 死亡率 自杀率 谋杀率 失业率 储蓄率 识字率 出口额 进口额 煤产量 发电量 监禁率 死刑 国债 ...

It has been suggested that 2015 La Manga del Cura status referendum be merged into this article. (Discuss) Proposed since January 2024. Cascada del Salto del Armadillo La Manga del Cura is a territory located in the Manabí Province belonging to the canton El Carmen in Ecuador. The territory covers an area of approximately 487 square kilometres (188 sq mi)[1] with around 24,000 inhabitants.[2] One of the most important tourist sites in the territory is the Cascada de...

 

Chinese snooker player In this Chinese name, the family name is Zhou (周). Zhou YuelongZhou at the 2016 Paul Hunter ClassicBorn (1998-01-24) 24 January 1998 (age 26)Chengdu, Sichuan, ChinaSport country ChinaNicknameThe Jumping Dragon[1]Professional2014–presentHighest ranking17 (February–March 2021)Current ranking 23 (as of 7 May 2024)Maximum breaks2Century breaks207 (as of 15 June 2024)Best ranking finishRunner-up (×3) Medal record Representing  China Men's Snooke...