Cultura dell'Europa
|
Read other articles:
Replika Bejana Warka, koleksi Pergamon Museum di Berlin, Jerman Bejana Warka adalah sebuah bejana berukir dari batu pualam putih, ditemukan di kompleks kuil dewi bangsa Sumeria Inanna di antara reruntuhan kota kuno Uruk yang sekarang ini termasuk daerah Kegubernuran Al Muthanna, kawasan selatan negara Irak. Sebagaimana Palungan Uruk dan Lempengan Narmer dari Mesir, bejana ini adalah salah satu hasil karya tertua berupa ukiran relief naratif yang masih ada, diperkirakan berasal dari 3200–300...
Keluaran 11Gambar sebuah gulungan Taurat modern, terbuka pada halaman yang memuat Kidung Laut (Keluaran 15:1-19) jelas dengan penataan khusus. Teacher's Edition: The Holy Bible. New York: Henry Frowde, Publisher to the University of Oxford, 1896.KitabKitab KeluaranKategoriTauratBagian Alkitab KristenPerjanjian LamaUrutan dalamKitab Kristen2← pasal 10 pasal 12 → Keluaran 11 (disingkat Kel 11) adalah bagian dari Kitab Keluaran dalam Alkitab Ibrani dan Perjanjian Lama di Alkitab Kris...
Freescale Semiconductor, Inc.JenisUmum (NYSE: FSL)IndustriSemikonduktorDidirikanKeluar dari Motorola pada tahun 2004KantorpusatAustin, Texas, ASTokohkunciRichard M. Beyer (CEO)Alan Campbell (CFO)Henri Richard (CSMO)Ken Hansen (CTO) See all executivesPendapatan$4,46 miliar USD (2010))[1]Laba operasi$1,218 miliar USD (2009)Laba bersih$1,15 miliar USD (2010)Karyawan18.500Situs webwww.freescale.com Freescale Semiconductor, Inc. memproduksi dan merancang perangkat keras tempelan, dengan 17...
Ne doit pas être confondu avec Turboréacteur. Pour des articles plus généraux, voir Propulsion des aéronefs et Moteur à réaction. Cet article est une ébauche concernant l’aéronautique. Vous pouvez partager vos connaissances en l’améliorant (comment ?) selon les recommandations des projets correspondants. Un turbopropulseur est un système de propulsion dont l'énergie est fournie par une turbine à combustion et dont la poussée principale est obtenue par la rotation d'une...
Синелобый амазон Научная классификация Домен:ЭукариотыЦарство:ЖивотныеПодцарство:ЭуметазоиБез ранга:Двусторонне-симметричныеБез ранга:ВторичноротыеТип:ХордовыеПодтип:ПозвоночныеИнфратип:ЧелюстноротыеНадкласс:ЧетвероногиеКлада:АмниотыКлада:ЗавропсидыКласс:Пт�...
Dam in Benton County, WashingtonHorn Rapids DamWannawish Dam with south canal in foregroundLocationBenton County, WashingtonCoordinates46°22′43″N 119°25′01″W / 46.37861°N 119.41694°W / 46.37861; -119.41694Opening date1892Dam and spillwaysImpoundsYakima RiverHeight12 ft (3.7 m)Length520 ft (160 m)[1] Horn Rapids Dam (also known as Wanawish Dam) is a concrete barrage dam on the Yakima River in Benton County, Washington near th...
Town in Connecticut, United StatesSuffield, ConnecticutTownThe Suffield Public Library SealMotto: Our Roots Run Deep[1] Hartford County and Connecticut Capitol Planning Region and ConnecticutShow SuffieldShow ConnecticutShow the United StatesCoordinates: 41°59′N 72°41′W / 41.983°N 72.683°W / 41.983; -72.683Country United StatesU.S. state ConnecticutCountyHartfordRegionCapitol RegionSettled1670Incorporated (Massachusetts)June 8,...
Pour les articles homonymes, voir Grenelle. Le logo du Grenelle de l'environnement. Le Grenelle Environnement (souvent appelé Grenelle de l'environnement) est un ensemble de rencontres politiques organisées en France en septembre et décembre 2007, visant à prendre des décisions à long terme en matière d'environnement et de développement durable, en particulier pour restaurer la biodiversité par la mise en place d'une trame verte et bleue et de schémas régionaux de cohérence écol...
この項目には、一部のコンピュータや閲覧ソフトで表示できない文字が含まれています(詳細)。 数字の大字(だいじ)は、漢数字の一種。通常用いる単純な字形の漢数字(小字)の代わりに同じ音の別の漢字を用いるものである。 概要 壱万円日本銀行券(「壱」が大字) 弐千円日本銀行券(「弐」が大字) 漢数字には「一」「二」「三」と続く小字と、「壱」「�...
Massimiliano Gatto Nazionalità Italia Altezza 182 cm Peso 75 kg Calcio Ruolo Centrocampista Squadra Como (Under-19) Termine carriera 31 luglio 2023 CarrieraGiovanili Reggina2011-2014 ChievoSquadre di club1 2014-2015→ Carpi11 (0)2015-2016→ Pro Vercelli11 (1)2016-2017→ Pisa22 (2)2017-2018 Chievo0 (0)2018-2019 Pro Vercelli38 (2)[1]2019-2023 Como53 (13)Nazionale 2015 Italia U-204 (1)Carriera da allenatore 2023- ComoAssis...
Charles Goodyear sang penemu proses vulkanisasi Vulkanisasi adalah proses pengolahan karet.[1] Sejarah Proses vulkanisasi ditemukan oleh seorang ilmuwan ahli kimia asal Amerika Serikat yang bernama Charles Goodyear pada tahun 1839.[1] Pada awalnya, proses ini berprinsip pada pencampuran belerang dan karet dalam kondisi suhu tertentu sehingga dihasilkan produk karet yang lebih keras teksturnya dibandingkan karet biasa.[1] Penggunaan karet berkualitas ini diaplikasikan o...
Druga liga 1982-1983Druga savezna liga SFRJ 1982-1983 Competizione 2. Savezna liga Sport Calcio Edizione 37ª Organizzatore FSJ Date dal 15 agosto 1982al 26 giugno 1983 Luogo Jugoslavia Partecipanti 36 Formula 2 gironi all'italiana Risultati Vincitore finale non disputata Promozioni Čelik ZenicaPriština Retrocessioni LiriaRadnički KragujevacSolinDubočica LeskovacMariborOFK TitogradLovćenKozara Statistiche Incontri disputati 612 Gol segnati 1 475 (2,41 per incontr...
1941 song by Sister Rosetta Tharpe Up Above My Head, I Hear Music in the AirSingle by Sister Rosetta Tharpe and Marie KnightReleased1948RecordedNovember 24, 1947VenueNew York CityGenreGospel, R&BLength2:27LabelDeccaSongwriter(s)Sister Rosetta Tharpe Up Above My Head is a gospel song of traditional origin, first recorded in 1941 (as Above My Head I Hear Music In The Air) by The Southern Sons, a vocal group formed by William Langford of the Golden Gate Quartet.[1] In the version tha...
Self proclaimed unrecognized state Kingdom of Araucanía and PatagoniaReino de la Araucanía y la Patagonia1860–1862 Flag Coat of arms Location of the claimed territory of the Kingdom of Araucanía and Patagonia, in Chile and ArgentinaStatusUnrecognized StateCapitalPerquenco (claimed)Common languagesMapudungunGovernmentElective MonarchyKing • 1860–1862 Orélie-Antoine I (Aurelio Antonio I) History • Established November 17/20, 1860• Disestablished Janua...
American government official (born 1962) Regina LombardoActing Director of the Bureau of Alcohol, Tobacco, Firearms and ExplosivesIn officeMay 1, 2019 – June 3, 2021PresidentDonald TrumpJoe BidenPreceded byB. Todd JonesThomas Brandon (acting) Personal detailsBorn (1962-12-21) December 21, 1962 (age 61)Manhattan, New York, U.S.EducationUniversity of South Florida (BA) Regina Lombardo is an American law enforcement official previously serving as acting director of the Bureau of ...
Category 5 South Pacific cyclone in 2015 This article is about the 2015 South Pacific tropical cyclone. For the 1997 storm of the same name, see Cyclone Pam (1997). For the mock hurricane exercise in New Orleans, see Hurricane Pam. Not to be confused with Cyclone Lam. Severe Tropical Cyclone Pam Pam nearing peak intensity over Vanuatu, on 13 MarchMeteorological historyFormed6 March 2015 (6 March 2015)Extratropical15 March 2015Dissipated20 March 2015 (20 March 2015) Category 5 severe...
Title granted to the UK Prime Minister This article needs additional citations for verification. Please help improve this article by adding citations to reliable sources. Unsourced material may be challenged and removed.Find sources: First Lord of the Treasury – news · newspapers · books · scholar · JSTOR (May 2021) (Learn how and when to remove this message) United KingdomFirst Lord of the TreasuryRoyal Arms of His Majesty's GovernmentFlag of the Unit...
Anglican Bishop of Sodor and Man between 1604 and 1633 Christianity portalJohn PhillipsBishop of Sodor and ManInstalled1604Term ended1633 (death)PredecessorGeorge LloydSuccessorWilliam ForsterPersonal detailsBornJohn Phillipsc. 1555 (1555)WalesDied1633(1633-00-00) (aged 77–78)Ballaugh, Isle of ManBuriedSt Germans Cathedral, Peel, Isle of ManNationalityWelshDenominationChurch of EnglandAlma materSt Mary Hall, Oxford John Phillips (ca. 1555 – 7 August 1633)[...
Mathematical term in calculus Not to be confused with Cavalieri's principle. Cavalieri's quadrature formula computes the area under the cubic curve, together with other higher powers. In calculus, Cavalieri's quadrature formula, named for 17th-century Italian mathematician Bonaventura Cavalieri, is the integral ∫ 0 a x n d x = 1 n + 1 a n + 1 n ≥ 0 , {\displaystyle \int _{0}^{a}x^{n}\,dx={\tfrac {1}{n+1}}\,a^{n+1}\qquad n\geq 0,} and generalizations thereof. This is the definite...
Aboncourtcomune Aboncourt – Veduta LocalizzazioneStato Francia RegioneGrand Est Dipartimento Meurthe e Mosella ArrondissementToul CantoneMeine au Saintois TerritorioCoordinate48°21′N 5°58′E48°21′N, 5°58′E (Aboncourt) Altitudine324 e 476 m s.l.m. Superficie7,06 km² Abitanti119[1] (2009) Densità16,86 ab./km² Altre informazioniCod. postale54115 Fuso orarioUTC+1 Codice INSEE54003 CartografiaAboncourt Sito istituzionaleModifica dati su Wikidata...