Halaman ini berisi artikel tentang satelit planet Uranus. Untuk karakter dalam sandiwara karya William Shakespeare yang berjudul Impian di Tengah Musim, lihat Titania.
Titania
Citra belahan selatan Titania yang diabadikan oleh Voyager 2 pada 24 Januari 1986.
Titania terdiri atas kandungan es dan bebatuan yang kurang lebih sama banyak, dan kemungkinan terdiferensiasi menjadi inti yang berbatu dan mantel yang terdiri dari es. Di batas antara inti dan mantel mungkin terdapat sebuah lapisan air. Permukaan Titania, yang relatif gelap dan sedikit berwarna merah, tampaknya terbentuk akibat tubrukan dan proses endogenik. Permukaan Titania juga penuh akan kawah tubrukan yang diameternya dapat mencapai 326 km, tetapi kawah di permukaan Titania tidak sebanyak kawah yang terdapat di permukaan satelit terluar Uranus, Oberon. Permukaan Titania pernah mengalami proses pelapisan kembali secara endogenik yang menghancurkan permukaannya yang tua dan penuh akan kawah. Di permukaan Titania juga terdapat rangkaian ngarai dan gawir besar, yang merupakan dampak dari pengembangan bagian dalamnya selama tahap akhir evolusinya. Sama seperti sebagian besar satelit Uranus lainnya, Titania kemungkinan terbentuk dari piringan akresi yang mengelilingi planet tersebut setelah pembentukannya.
Spektroskopiinframerah pada tahun 2001 dan 2005 menunjukkan keberadaan es air dan karbon dioksida beku di permukaan Titania, yang mengindikasikan keberadaan atmosfer karbon dioksida. Pengukuran selama okultasi Titania terhadap suatu bintang menunjukkan batas maksimal tekanan atmosfer sebesar 10–20 nbar. Uranus dan satelit-satelitnya hanya pernah dipelajari dari dekat oleh wahana Voyager 2 pada Januari 1986. Wahana tersebut mengabadikan beberapa citra Titania, yang memungkinkan pemetaan 40% permukaan satelit tersebut.
Sejarah
Titania ditemukan oleh William Herschel pada tanggal 11 Januari 1787, hari yang sama ketika ia menemukan satelit terbesar kedua Uranus, Oberon.[1][9] Ia kemudian melaporkan penemuan empat satelit lainnya,[10] meskipun keempatnya dinyatakan tidak benar.[11] Selama hampir lima puluh tahun setelah ditemukan, Titania dan Oberon tidak diamati dengan alat lain selain teleskop William Herschel.[12] Kini satelit tersebut dapat terlihat dari Bumi dengan teleskop amatir kelas atas.[8]
Titania awalnya disebut sebagai "satelit Uranus yang pertama" dan pada tahun 1848 disebut Uranus I oleh William Lassell,[16] meskipun ia kadang-kadang menggunakan penomoran William Herschel (dengan Titania dan Oberon adalah Uranus II dan IV).[17] Pada tahun 1851, Lassell akhirnya menomori semua satelit yang diketahui berdasarkan urutan jarak mereka dari planet Uranus dengan angka Romawi, sehingga Titania kemudian disebut Uranus III.[18]
Orbit
Titania mengorbit Uranus dari jarak sekitar 436.000 km, sehingga Titania merupakan satelit terjauh kedua yang mengorbit planet tersebut di antara kelima satelit utama lainnya.[g] Orbit Titania mempunyai eksentrisitas yang kecil (bentuknya sangat mendekati sebuah lingkaran) dan juga mempunyai inklinasi (sudut kemiringan) yang relatif sangat kecil terhadap khatulistiwa Uranus.[2]Periode orbitnya sama dengan periode rotasinya, yaitu sekitar 8,7 hari. Dengan kata lain, Titania merupakan satelit yang mempunyai orbit sinkron dan terkunci pasang surut, sehingga satu sisi satelit ini selalu menghadap ke arah planet Uranus.[5]
Orbit Titania terletak di dalam magnetosfer Uranus.[19] Hal ini penting karena sisi belakang satelit (sisi yang berlawanan dengan arah revolusi mengelilingi Uranus atau trailing hemisphere) yang mengorbit di dalam magnetosfer terpapar oleh plasma magnetosfer, yang turut berotasi dengan planet tersebut.[20] Paparan ini akan menyebabkan sisi belakang satelit menjadi gelap, dan hal ini dapat diamati di semua satelit Uranus kecuali Oberon (lihat di bawah).[19]
Semua satelit Uranus (termasuk Titania) mengalami siklus musim ekstrem karena Uranus berevolusi dengan sumbu rotasi yang miring mendekati 90° menghadap matahari, sedangkan satelitnya mengorbit di bidang khatulistiwa planet tersebut. Baik kutub utara maupun kutub selatan Uranus diselimuti oleh kegelapan total selama 42 tahun, dan selama 42 tahun pula akan disinari matahari secara terus-menerus, serta matahari akan terbit dekat dengan zenit di atas salah satu kutub setiap terjadinya titik balik matahari.[19] Wahana antariksa Voyager 2 terbang melewati Uranus bertepatan dengan terjadinya titik balik matahari musim panas pada tahun 1986 di belahan bagian selatan, yaitu ketika hampir semua belahan bagian selatan disinari oleh matahari. Setiap 42 tahun sekali, ketika Uranus mengalami ekuinoks dan bidang khatulistiwanya berpotongan dengan Bumi, okultasi (tertutupnya) salah satu satelit Uranus oleh satelit Uranus yang lain mungkin dapat terjadi. Pada tahun 2007, terdapat sejumlah fenomena semacam itu yang diamati, termasuk dua okultasi Titania oleh Umbriel pada tanggal 15 Agustus dan 28 Desember.[21][22]
Komposisi dan struktur dalam
Titania adalah satelit alami terbesar planet Uranus sekaligus satelit alami terbesar kedelapan di Tata Surya.[h] Dengan massa jenis sebesar 1,71 g/cm³,[24] massa jenis satelit ini lebih besar daripada satelit Uranus pada umumnya, yang menandakan bahwa Titania terdiri dari komponen es air dan non-es padat yang kurang lebih sama banyak.[25] Komponen non-es kemungkinan terbuat dari bebatuan dan bahan berkarbon yang termasuk senyawa organik berat.[5] Bukti keberadaan es air diperkuat oleh pengamatan spektroskopiinframerah pada tahun 2001–2005 yang mengungkapkan keberadaan es air kristalin di permukaan satelit ini.[19] Spektrum pita serapan es air pada sisi depan Titania (sisi yang berhadapan dengan arah revolusi mengelilingi Uranus atau leading hemisphere) sedikit lebih kuat daripada sisi belakangnya. Hal ini berkebalikan dengan pengamatan di Oberon yang justru menunjukkan bahwa sisi belakang satelit ini memiliki tanda es air yang lebih kuat.[19] Penyebab hal ini masih belum diketahui, tetapi mungkin berhubungan dengan tubrukan partikel bermuatan dari magnetosfer Uranus yang ternyata lebih kuat pada sisi belakang (disebabkan oleh plasma yang turut berotasi di planet tersebut).[19] Partikel energetik cenderung menggerogoti es air, mengurai metana yang terperangkap di dalam es menjadi klatrat hidrat, dan menggelapkan senyawa-senyawa organik lainnya, yang meninggalkan residu gelap serta kaya karbon.[19]
Selain kandungan air, kandungan lain yang ditemukan di permukaan Titania oleh spektroskopi inframerah adalah karbon dioksida, yang terutama terkonsentrasi pada sisi belakang.[19] Asal usul dari karbon dioksida tersebut tidaklah sepenuhnya jelas. Karbon dioksida tersebut mungkin dihasilkan dari bahan-bahan karbonat, organik yang terkena pengaruh radiasi ultraviolet matahari, atau partikel bermuatan berenergi tinggi dari magnetosfer Uranus. Proses yang terakhir dapat menjelaskan hal yang menyebabkan terjadinya kesenjangan dalam persebaran karbon dioksida tersebut karena sisi belakang satelit terkena pengaruh magnetosfer Uranus yang lebih kuat daripada sisi depannya. Sumber lainnya yang memungkinkan adalah pelepasan gas CO2primordial yang terperangkap oleh es air di bagian dalam Uranus.[19]
Titania kemungkinan dapat terdiferensiasi menjadi sebuah inti bebatuan yang dikelilingi oleh mantel yang terdiri dari es.[25] Jika hal ini memang benar, jari-jari inti Titania yang sebesar 520 km adalah sekitar 66% dari jari-jarinya, dan massa Titania sekitar 58% dari massanya; proporsi ini ditentukan oleh komposisi satelit alami tersebut. Tekanan di pusat Titania tercatat sekitar 0,58 GPa (5,8 kbar).[25] Kondisi terkini dari mantel yang terdiri dari es tersebut tidaklah jelas. Jika es tersebut mengandung cukup amonia atau bahan antibeku lain, Titania mungkin memiliki lapisan air di batas antara inti dan mantel. Ketebalan lapisan air tersebut, jika memang ada, dapat mencapai lebih dari 50 km dengan suhu sekitar 190 K.[25] Namun, struktur dalam Titania sangat bergantung pada sejarah termalnya yang kurang diketahui.[26]
Ketampakan permukaan
Di antara satelit Uranus lainnya, kecerahan Titania berada di tingkat menengah antara Oberon dan Umbriel yang gelap, serta Ariel dan Miranda yang terang.[6] Permukaannya menunjukkan efek pertentangan (opposition surge) yang kuat: reflektivitasnya menurun dari 35% di sudut fase 0° (albedo geometrik) ke 25% di sudut sekitar 1°. Titania memiliki albedo Bond yang relatif rendah, yaitu sekitar 17%.[6] Permukaan Titania sedikit berwarna merah, tetapi tidak lebih kuat daripada Oberon.[27] Namun, deposit atau endapan tubrukan baru lebih berwarna biru, sementara dataran halus yang terletak pada sisi depan di dekat kawah Ursula, maupun sejumlah graben, lebih berwarna merah.[28][29] Terdapat kesenjangan antara sisi depan dan belakang[30] dengan sisi depan 8% lebih merah daripada sisi belakang.[i] Namun, perbedaan ini berhubungan dengan dataran halus dan mungkin juga merupakan kebetulan.[28] Permukaan Titania memerah kemungkinan disebabkan karena pelapukan angkasa yang diakibatkan oleh tubrukan partikel bermuatan dan mikrometeorit yang usianya lebih tua dari Tata Surya sendiri.[28] Namun, kesenjangan warna Titania sepertinya lebih berhubungan dengan akresi (bergabungnya gas dan debu menjadi objek yang lebih besar seperti planet atau satelit) bahan berwarna kemerah-merahan yang berasal dari bagian luar sistem Uranus, kemungkinan dari satelit tak beraturan yang terendapkan terutama pada sisi depan.[30]
Ilmuwan mengenali tiga kelas ketampakan geologis pada Titania: kawah, celah (ngarai), rupes (gawir).[32] Permukaan Titania tidak lebih berkawah daripada permukaan Oberon atau Umbriel, yang menandakan bahwa permukaan satelit ini lebih muda.[29] Diameter kawah-kawah tersebut mencapai 362 km untuk kawah terbesar Titania, Gertrude[33] (di dekat kawah tersebut juga terdapat cekungan yang terdegradasi yang memiliki ukuran yang kira-kira sama).[29] Beberapa kawah lainnya (contohnya Ursula dan Jessica) dikelilingi oleh ejecta (pecahan) yang tersebar secara radial dan mengandung es yang relatif baru.[5] Semua kawah besar di Titania memiliki dasar yang datar dan puncak di tengahnya, terkecuali kawah Ursula yang memiliki sebuah lubang besar di puncaknya.[29] Pada bagian barat kawah Gertrude terdapat sebuah daerah dengan topografi tak beraturan yaitu "unnamed basin" (cekungan tanpa nama), yang mungkin adalah sebuah cekungan yang terdegradasi dengan diameter sekitar 330 km.[29]
Ketampakan permukaan Titania terpotong oleh sebuah sistem sesar yang sangat besar (gawir). Di beberapa tempat, dua gawir atau tebing curam yang sejajar menandakan lekukan-lekukan pada kerak satelit, membentuk graben, yang kadang-kadang disebut ngarai.[34] Ngarai Titania yang paling terkenal di antara yang lainnya adalah Messina Chasma yang membentang sekitar 1.500 km dari khatulistiwa sampai hampir ke kutub selatan.[32]Graben pada Titania memiliki lebar 20–50 km dan memiliki relief sekitar 2–5 km. Gawir yang tidak berhubungan dengan ngarai disebut rupes, seperti Rousillon Rupes di dekat kawah Ursula.[32] Daerah-daerah di sekitar gawir dan dekat Ursula terlihat halus di resolusi citra Voyager 2. Dalam sejarah geologis Titania, dataran halus tersebut kemungkinan mengalami proses pelapisan kembali permukaan setelah sebagian besar kawah terbentuk. Proses pelapisan kembali tersebut mungkin bersifat endogenik (proses yang terjadi karena tenaga yang berasal dari dalam), yang melibatkan erupsi bahan fluida dari bagian dalam (kriovolkano), atau mungkin juga karena ejecta tubrukan dari kawah-kawah besar terdekat menghilangkan kawah tubrukan yang ada.[29]Graben kemungkinan adalah ketampakan geologis termuda pada Titania; graben memotong semua kawah dan bahkan dataran halus.[34]
Geologi Titania dipengaruhi oleh dua gaya yang berlawanan, yaitu pembentukan kawah tubrukan dan pelapisan kembali permukaan secara endogenik.[34] Proses pertama berperan besar dalam keseluruhan sejarah satelit ini dan memengaruhi seluruh permukaannya. Proses yang kedua juga memengaruhi seluruh permukaan, tetapi hanya aktif terutama pada periode setelah pembentukan satelit. Proses ini melenyapkan terrain (medan) permukaan awal satelit yang penuh akan kawah, serta juga menjelaskan penyebab jumlah kawah tubrukan pada permukaan satelit kini relatif rendah.[5] Peristiwa pelapisan kembali lainnya mungkin terjadi setelahnya dan menyebabkan pembentukan dataran halus.[5] Kemungkinan lainnya, dataran halus mungkin merupakan selimut ejecta kawah terdekat.[34] Proses endogen yang terbaru lebih bersifat tektonik dan menyebabkan pembentukan ngarai yang sebenarnya merupakan retakan raksasa di kerak es.[34] Keretakan kerak tersebut disebabkan oleh mengembangnya Titania sebesar sekitar 0,7%.[34]
Ketampakan permukaan Titania yang diberikan nama[32]
Ketampakan permukaan pada Titania yang dinamai menurut nama karakter-karakter perempuan dari karya Shakespeare.[35]
Atmosfer
Keberadaan karbon dioksida pada permukaan satelit ini menunjukkan bahwa Titania mungkin memiliki atmosfer musiman tipis yang terdiri dari CO2, mirip seperti satelit Jupiter, yakni Kalisto.[j] Gas-gas lainnya seperti nitrogen dan metana kemungkinan tidak ada karena gravitasi Titania yang lemah tidak dapat mencegah gas tersebut keluar ke ruang angkasa. Pada suhu maksimal yang dapat dicapai saat puncak musim panas (89 K), tekanan uap karbon dioksida tercatat sebesar sekitar 300 μPa (3 nbar).[36]
Pada 8 September 2001, Titania mengokultasi sebuah bintang terang (HIP 106829) dengan magnitudo tampak sebesar 7,2; ini merupakan kesempatan untuk memperbaiki perkiraan diameter dan efemeris (posisi suatu benda langit dalam rentang waktu tertentu) Titania, sekaligus untuk mendeteksi atmosfer yang ada. Data menunjukkan bahwa tidak ditemukan atmosfer yang mencapai tekanan permukaan 1–2 mPa (10–20 nbar); kalaupun ada, atmosfernya mestilah jauh lebih tipis daripada atmosfer Triton atau Pluto. Angka 1–2 mPa sendiri masih beberapa kali lebih besar daripada tekanan permukaan maksimal karbon dioksida di atmosfer, yang berarti data tersebut pada dasarnya belum membatasi parameter-parameter atmosfer Titania.[37]
Geometri sistem Uranus yang tidak biasa menyebabkan kutub satelitnya menerima lebih banyak energi matahari daripada daerah khatulistiwanya.[19] Karena tekanan uap CO2 sangat dipengaruhi suhu,[36] ini mungkin menyebabkan akumulasi karbon dioksida pada daerah dengan garis lintang rendah di Titania; karbon dioksida tersebut dapat stabil dalam wujud es pada daerah beralbedo tinggi dan daerah berbayang di permukaan satelit. Saat musim panas, ketika suhu kutub mencapai temperatur setinggi 85–90 K,[38][36][19] karbon dioksida menyublim sekaligus bermigrasi ke kutub yang berlawanan dan ke daerah khatulistiwa, sehingga menimbulkan sejenis siklus karbon. Partikel-partikel magnetosfer dapat mengeluarkan es karbon dioksida yang telah terakumulasi dari cold trap (daerah yang cukup dingin dan dapat membekukan bahan volatil), sehingga karbon dioksida pun terlepas dari permukaan satelit. Titania diperkirakan telah kehilangan karbon dioksida dengan jumlah yang signifikan sejak pembentukannya 4,6 miliar tahun yang lalu.[19]
Asal usul dan evolusi
Titania diperkirakan terbentuk dari piringan akresi atau subnebula, dan mungkin juga terbentuk oleh tubrukan raksasa yang sepertinya menyebabkan Uranus memiliki kemiringan sumbu yang besar. Subnebula merupakan sebuah piringan gas dan debu yang ada di sekitar Uranus beberapa waktu setelah pembentukannya.[39] Komposisi tepat dari subnebula ini tidak diketahui. Walaupun begitu, massa jenis Titania dan satelit Uranus lainnya yang relatif tinggi dibandingkan dengan satelit Saturnus menunjukkan bahwa satelit ini tidak banyak memiliki air.[k][5] Unsur nitrogen dan karbon dalam jumlah yang signifikan mungkin hadir dalam bentuk karbon dioksida dan gas nitrogen, bukannya amonia dan metana.[39] Satelit yang terbentuk dalam subnebula biasanya akan mengandung lebih sedikit es air (dengan CO dan N2 terperangkap sebagai klatrat) dan lebih banyak bebatuan; ini dapat menjelaskan massa jenisnya yang lebih tinggi.[5]
Akresi (bergabungnya gas dan debu menjadi objek yang lebih besar seperti planet atau satelit) Titania mungkin berlangsung selama beberapa juta tahun.[39] Tubrukan-tubrukan yang disertai dengan akresi menyebabkan pemanasan lapisan luar satelit ini.[40] Suhu maksimal sekitar 250 K (−23 °C) dapat dicapai pada kedalaman sekitar 60 km pada saat pemanasan tersebut.[40] Setelah berakhirnya pembentukan, lapisan di bawah permukaan mengalami pendinginan, sedangkan bagian dalam Titania mengalami pemanasan karena peluruhan unsur-unsur radioaktif yang terdapat di bebatuannya.[5] Lapisan di dekat permukaan yang mendingin mengalami penyusutan, sedangkan bagian dalamnya memuai. Hal ini menyebabkan tegangan ekstensional di kerak satelit yang mengakibatkan keretakan. Beberapa ngarai yang ada mungkin merupakan akibat dari hal ini. Proses ini berlangsung selama sekitar 200 juta tahun,[41] menyiratkan bahwa aktivitas endogen telah berhenti sejak miliaran tahun yang lalu.[5]
Pemanasan akibat akresi serta peluruhan unsur-unsur radioaktif kemungkinan sangat cukup untuk melelehkan es jika beberapa zat antibeku seperti amonia (dalam bentuk amonia hidrat) atau garam memang ada.[40] Pelelehan yang terjadi selanjutnya mungkin menyebabkan terpisahnya es dari bebatuan dan pembentukan inti berbatu yang dikelilingi mantel ber-es. Lapisan air (samudra) yang kaya akan amonia terlarut mungkin terbentuk di batas antara inti dan mantel. Suhu eutektik dari campuran ini adalah 176 K (−97 °C).[25] Jika temperatur menurun di bawah nilai tersebut, lautan akan membeku. Pembekuan air tersebut mungkin merupakan penyebab pengembangan bagian dalamnya yang mengakibatkan pembentukan sebagian besar ngarai.[29] Akan tetapi, pengetahuan mengenai evolusi geologis Titania pada masa kini cukup terbatas.[42]
Sejauh ini satu-satunya citra terdekat Titania berasal dari wahana Voyager 2 yang mengabadikan satelit ini saat terbang melewati Uranus pada Januari 1986. Karena Voyager 2 dapat mendekati Titania dengan jarak terdekat 365.200 km,[43] citra terbaik satelit ini memiliki resolusi spasial sebesar 3,4 km (hanya Miranda dan Ariel yang diabadikan dengan resolusi yang lebih baik).[29] Citra-citra tersebut mengabadikan sekitar 40% dari permukaan Titania, tetapi hanya 24% yang memiliki presisi yang cukup untuk pemetaan geologis. Pada saat Voyager 2 terbang melewati Uranus, belahan selatan Titania (seperti satelit-satelit lainnya) menghadap ke arah Matahari, sehingga belahan utara (gelap) tidak dapat dipelajari.[5]
Tidak ada wahana antariksa lain yang pernah mengunjungi sistem Uranus atau Titania, dan tidak ada misi yang sedang direncanakan. Sempat ada kemungkinan mengirimkan Cassini yang mempelajari Saturnus ke Uranus dalam sebuah perpanjangan misi, tetapi akhirnya tidak dilakukan.[44] Konsep misi lainnya yang diajukan adalah konsep pengorbit dan probe Uranus, yang dievaluasi sekitar tahun 2010.[45] Uranus juga dievaluasi sebagai bagian dari jalur yang akan dilewati untuk konsep pendahulu wahana antarbintang, Innovative Interstellar Explorer.[46]
Aristektur misi pengorbit dan probe Uranus ditetapkan sebagai prioritas tertinggi untuk Program Flagship NASA oleh Planetary Science Decadal Survey 2023-2032. Pertanyaan sains yang mendorong penentuan prioritas ini mencakup pertanyaan tentang sifat, strukur dalam, dan sejarah geologis satelit Uranus ini.[47] Misi pengorbit Uranus[48] dimasukkan sebagai prioritas urutan ketiga untuk Program Flagship NASA oleh Planetary Science Decadal Survey 2013-2022, dan rancangan konsep untuk misi semacam ini saat ini sedang dianalisis.[49]
^ Warna tersebut ditentukan oleh rasio albedo yang dilihat dari filter Voyager berwarna hijau (0,52–0,59 μm) dan violet (0,38–0,45 μm).[31][30]
^ Tekanan parsial CO2 pada permukaan Kalisto adalah sekitar 10 nPa (10 pbar).
^ Sebagai contohnya, Tethys, satelit Saturnus, yang memiliki massa jenis sebesar 0.97 g/cm³, yang menunjukkan bahwa satelit ini mengandung lebih dari 90% air.[19]
Bell III, J.F.; McCord, T. B. (1991). A search for spectral units on the Uranian satellites using color ratio images. Lunar and Planetary Science Conference, ke-21, 12–16 Maret 1990. Houston, TX, United States: Lunar and Planetary Sciences Institute. hlm. 473–489. Bibcode:1991LPSC...21..473B.
Smith, B. A.; Soderblom, L. A.; Beebe, A.; Bliss, D.; Boyce, J. M.; Brahic, A.; Briggs, G. A.; Brown, R. H.; Collins, S. A. (4 Juli 1986). "Voyager 2 in the Uranian System: Imaging Science Results". Science. 233 (4759): 43–64. Bibcode:1986Sci...233...43S. doi:10.1126/science.233.4759.43. PMID17812889.
Karkoschka, Erich (2001). "Comprehensive Photometry of the Rings and 16 Satellites of Uranus with the Hubble Space Telescope". Icarus. 151 (1): 51–68. Bibcode:2001Icar..151...51K. doi:10.1006/icar.2001.6596.
Jacobson, R. A.; Campbell, J. K.; Taylor, A. H.; Synnott, S. P. (Juni 1992). "The masses of Uranus and its major satellites from Voyager tracking data and earth-based Uranian satellite data". The Astronomical Journal. 103 (6): 2068–2078. Bibcode:1992AJ....103.2068J. doi:10.1086/116211.
Grundy, W. M.; Young, L. A.; Spencer, J. R.; Johnson, R. E.; Young, E. F.; Buie, M. W. (Oktober 2006). "Distributions of H2O and CO2 ices on Ariel, Umbriel, Titania, and Oberon from IRTF/SpeX observations". Icarus. 184 (2): 543–555. arXiv:0704.1525. Bibcode:2006Icar..184..543G. doi:10.1016/j.icarus.2006.04.016.
Mousis, O. (2004). "Modeling the thermodynamical conditions in the Uranian subnebula – Implications for regular satellite composition". Astronomy & Astrophysics. 413: 373–380. Bibcode:2004A&A...413..373M. doi:10.1051/0004-6361:20031515.
Croft, S. K. (1989). New geological maps of Uranian satellites Titania, Oberon, Umbriel and Miranda. Proceeding of Lunar and Planetary Sciences. 20. Lunar and Planetary Sciences Institute, Houston. hlm. 205C. Bibcode:1989LPI....20..205C.
Herschel, W. S. (1787). "An Account of the Discovery of Two Satellites Revolving Round the Georgian Planet". Philosophical Transactions of the Royal Society of London. 77: 125–129. doi:10.1098/rstl.1787.0016. JSTOR106717.
Herschel, William, Sr. (1 Januari 1798). "On the Discovery of Four Additional Satellites of the Georgium Sidus. The Retrograde Motion of Its Old Satellites Announced; And the Cause of Their Disappearance at Certain Distances from the Planet Explained". Philosophical Transactions of the Royal Society of London. 88: 47–79. Bibcode:1798RSPT...88...47H. doi:10.1098/rstl.1798.0005.
Kuiper, G. P. (1949). "The Fifth Satellite of Uranus". Publications of the Astronomical Society of the Pacific. 61 (360): 129. Bibcode:1949PASP...61..129K. doi:10.1086/126146.
Ness, Norman F.; Acuña, Mario H.; Behannon, Kenneth W.; Burlaga, Leonard F.; Connerney, John E. P.; Lepping, Ronald P.; Neubauer, Fritz M. (Juli 1986). "Magnetic Fields at Uranus". Science. 233 (4759): 85–89. Bibcode:1986Sci...233...85N. doi:10.1126/science.233.4759.85. PMID17812894.
Lassell, W. (1852). "Beobachtungen der Uranus-Satelliten". Astronomische Nachrichten (dalam bahasa German). 34: 325. Bibcode:1852AN.....34..325.Pemeliharaan CS1: Bahasa yang tidak diketahui (link)
Arlot, J. -E.; Dumas, C.; Sicardy, B. (Desember 2008). "Observation of an eclipse of U-3 Titania by U-2 Umbriel on December 8, 2007 with ESO-VLT". Astronomy and Astrophysics. 492 (2): 599–602. Bibcode:2008A&A...492..599A. doi:10.1051/0004-6361:200810134.
USGS/IAU (1 Oktober 2006). "Gertrude on Titania". Gazetteer of Planetary Nomenclature. USGS Astrogeology. Diarsipkan dari versi asli tanggal 15 Mei 2013. Diakses tanggal 23 Februari 2012.
Hillier, John; Squyres, Steven W. (Agustus 1991). "Thermal stress tectonics on the satellites of Saturn and Uranus". Journal of Geophysical Research. 96 (E1): 15,665–15,674. Bibcode:1991JGR....9615665H. doi:10.1029/91JE01401.
Widemann, T.; Sicardy, B.; Dusser, R.; Martinez, C.; Beisker, W.; Bredner, E.; Dunham, D.; Maley, P.; Lellouch, E.; Arlot, J. -E.; Berthier, J.; Colas, F.; Hubbard, W. B.; Hill, R.; Lecacheux, J.; Lecampion, J. -F.; Pau, S.; Rapaport, M.; Roques, F.; Thuillot, W.; Hills, C. R.; Elliott, A. J.; Miles, R.; Platt, T.; Cremaschini, C.; Dubreuil, P.; Cavadore, C.; Demeautis, C.; Henriquet, P.; et al. (Februari 2009). "Titania's radius and an upper limit on its atmosphere from the September 8, 2001 stellar occultation"(PDF). Icarus. 199 (2): 458–476. Bibcode:2009Icar..199..458W. doi:10.1016/j.icarus.2008.09.011. Diarsipkan dari versi asli(PDF) tanggal 2014-07-25. Diakses tanggal 2019-05-03.
Strobell, M.E.; Masursky, H. (1987). "New Features Named on the Moon and Uranian Satellites". Abstracts of the Lunar and Planetary Science Conference. 18: 964–65. Bibcode:1987LPI....18..964S.