Nanopartikel adalah partikel yang berukuran antara 1 dan 100 nanometer.[1] Dalam nanoteknologi, suatu partikel didefinisikan sebagai objek kecil yang berperilaku sebagai satu kesatuan terhadap sifat dan transportasinya. Partikel lebih jauh diklasifikasikan menurut diameternya.[2] Partikel ultrahalus serupa dengan nanopartikel dan berukuran antara 1 dan 100 nanometer, partikel halus berukuran antara 100 dan 2,500 nanometer, dan partikel kasar berukuran antara 2,500 dan 10,000 nanometer.
Partikel berbagai bentuk dengan dimensi antara 1 × 10−9 dan 1 × 10−7 m.[10]
Catatan 1: Dimodifikasi dari definisi nanopartikel dan nanogel [ref.,[11][12]].
Catatan 2: Dasar batas 100-nm berdasarkan fakta bahwa sifat baru yang membedakan partikel dari material ruahnya umumnya terjadi pada skala panjang kritis di bawah 100 nm.
Catatan 3: Karena fenomena lainnya (transparansi atau turbiditas, ultrafiltrasi, dispersi stabil, dll.) yang memperpanjang batas atas terkadang dipertimbangkan, penggunaan prefiks nano diterima untuk dimensi yang lebih kecil dari 500 nm, diindikasikan menyediakan rujukan definisi.
Catatan 4: Tabung dan serat yang berdimensi hanya di bawah 100 nm juga merupakan nanopartikel.[13]
Istilah "nanopartikel" tidak biasanya diterapkan untuk molekul individu; biasanya mengacu pada material anorganik.
Alasan untuk definisi sinonim dari nanopartikel dan partikel ultrahalus adalah bahwa, selama tahun 1970-an dan 80-an, ketika studi fundamental menyeluruh pertama terhadap "nanopartikel" sedang berlangsung di Amerika Serikat (oleh Granqvist dan Buhrman)[14] dan Jepang, (dalam Proyek ERATO)[15] mereka disebut sebagai "partikel ultrahalus" (Ultrafine Particle, UFP). Namun, selama tahun 1990-an ketika National Nanotechnology Initiative diluncurkan di Amerika Serikat, nama baru, "nanopartikel," telah menjadi lebih umum (misalnya, lihat paper penulis senior yang sama pada 20 tahun kemudian yang membahas masalah yang sama, ukuran distribusi lognormal [16]). Nanopartikel dapat menunjukkan sifat yang berkaitan dengan ukuran yang berbeda secara signifikan dari yang baik partikel halus atau material ruah.[17][18]
Nanokluster memiliki setidaknya satu dimensi antara 1 dan 10 nanometer dan suatu distribusi ukuran yang sempit. Bubuk nano[19] merupakan gumpalan partikel ultrahalus, nanopartikel, atau nanokluster. Kristal tunggal yang berukuran nanometer, atau domain tunggal partikel ultrahalus, sering disebut sebagai kristal nano.
Sifat
Nanopartikel adalah kepentingan ilmiah yang besar karena mereka, pada dasarnya, menjadi jembatan antara material ruah dan struktur atom atau molekul. Suatu material ruah harus memiliki sifat fisik yang konstan terlepas dari ukurannya, tetapi pada skala nano sifat yang tergantung pada ukuran sering diamati. Dengan demikian, sifat material berubah ketika ukuran mereka mendekati skala nano dan ketika persentase dari permukaan dalam hubungannya dengan persentase volume material menjadi signifikan. Untuk material ruah yang lebih besar dari satu mikrometer (atau mikron), persentase permukaan tidak signifikan dalam kaitannya dengan volume dalam sebagian besar materi. Oleh karena itu sifat yang menarik dan kadang-kadang tak terduga dari nanopartikel adalah sebagian besar disebabkan oleh luas permukaan yang besar pada material, yang mendominasi kontribusi yang diberikan oleh sebagian kecil dari materi.
Nanopartikel sering memiliki sifat optik yang tak terduga karena mereka cukup kecil untuk membatasi elektron dan menghasilkan efek kuantum.[8] Misalnya, nanopartikel emas tampak merah pekat hingga hitam dalam larutan. Nanopartikel emas berwarna kuning dan silikon abu-abu berwarna merah. Nanopartikel emas mencair pada suhu yang lebih rendah (~300 °C untuk ukuran 2.5 nm) daripada lempengan emas (1064 °C);.[20]
Penyerapan radiasi matahari jauh lebih tinggi dalam material yang terdiri dari nanopartikel daripada dalam film tipis pada lembaran kontinu dari material. Baik dalam PV surya dan aplikasi panasmatahari, pengendalian ukuran, bentuk, dan material dari partikel, dimungkinkan untuk mengendalikan penyerapan surya.[7][9][21]
Nanopartikel logam, dielektrik, dan semikonduktor telah dibuat, begitu pula dengan struktur hibridnya (misalnya, nanopartikel kulit-inti).[6] Nanopartikel yang terbuat dari bahan semikonduktor juga dapat diberi label titik kuantum jika mereka cukup kecil (biasanya sub 10 nm) di mana kuantisasi dari tingkat energi elektronik terjadi. Partikel nano tersebut digunakan dalam aplikasi biomedis sebagai pembawa obat atau agen pencitraan.
Nanopartikel semi padat dan lembut telah diproduksi. Suatu prototipe nanopartikel yang bersifat semi-padat merupakan liposom. Berbagai jenis nanopartikel liposom saat ini digunakan secara klinis sebagai sistem pengiriman untuk obat antikanker dan vaksin.
Nanopartikel dengan satu separuh hidrofilik dan separuh lainnya hidrofobik disebut partikel Janus dan sangat efektif untuk menstabilkan emulsi. Mereka dapat merakit diri pada antarmuka air/minyak dan bertindak sebagai surfaktan padat.
Aplikasi
Laser
Penggunaan nanopartikel pada laserpoli(metil metakrilat) (PMMA) terdoping-pewarna didemonstrasikan pada tahun 2003 dan telah terbukti meningkatkan efisiensi konversi dan mengurangi divergensi sinar laser.[22] Peneliti mengaitkan pengurangan dalam divergensi berkas untuk meningkatkan karakteristik dn/dT dari nanokomposit organik-anorganik terdoping-pewarna. Komposisi optimum yang dilaporkan oleh para peneliti ini adalah 30% w/w SiO2 (~ 12 nm) dalam PMMA terdoping-pewarna.
^Hubler, A.; Osuagwu, O. (2010). "Digital quantum batteries: Energy and information storage in nanovacuum tube arrays". Complexity. doi:10.1002/cplx.20306.
^Stephenson, C.; Hubler, A. (2015). "Stability and conductivity of self assembled wires in a transverse electric field". Sci.Rep.5. doi:10.1038/srep15044.
^Hubler, A.; Lyon, D. (2013). "Gap size dependence of the dielectric strength in nano vacuum gaps". IEEE. doi:10.1109/TDEI.2013.6571470.
^Vert, M.; Doi, Y.; Hellwich, K. H.; Hess, M.; Hodge, P.; Kubisa, P.; Rinaudo, M.; Schué, F. O. (2012). "Terminology for biorelated polymers and applications (IUPAC Recommendations 2012)". Pure and Applied Chemistry. 84 (2). doi:10.1351/PAC-REC-10-12-04.
^Alemán, J.; Chadwick, A. V.; He, J.; Hess, M.; Horie, K.; Jones, R. G.; Kratochvíl, P.; Meisel, I.; Mita, I.; Moad, G.; Penczek, S.; Stepto, R. F. T. (2007). "Definitions of terms relating to the structure and processing of sols, gels, networks, and inorganic-organic hybrid materials (IUPAC Recommendations 2007)". Pure and Applied Chemistry. 79 (10): 1801. doi:10.1351/pac200779101801.
^Kiss, L. B.; Söderlund, J.; Niklasson, G. A.; Granqvist, C. G. (1999). "New approach to the origin of lognormal size distributions of nanoparticles". Nanotechnology. 10: 25–28. Bibcode:1999Nanot..10...25K. doi:10.1088/0957-4484/10/1/006.
^Buzea, C.; Pacheco, I. I.; Robbie, K. (2007). "Nanomaterials and nanoparticles: Sources and toxicity". Biointerphases. 2 (4): MR17–MR71. doi:10.1116/1.2815690. PMID20419892.