Kekisi (tatanan)

Kisi adalah struktur abstrak digunakan dalam subdisiplin matematika dari teori order dan aljabar abstrak. Himpunan terurut sebagian di mana dua elemen memiliki supremum (juga disebut batas atas terkecil atau gabung) dan infimum (juga disebut batas bawah terbesar atau bertemu). Contoh dari bilangan asli, dengan diurutkan oleh pembagian, dimana supremum adalah kelipatan persekutuan terkecil dan infimum adalah pembagi persekutuan terbesar.

Kisi dikarakterisasi sebagai struktur aljabar menggunakan aksioma atik identitas. Karena kedua definisi tersebut ekuivalen, teori kisi yang menggunakan teori urutan dan aljabar universal. Semikisi salah satu bagian kisi adalah aljabar Heyting dan Boolean. Struktur "kisi" digunakan teori-urutan serta deskripsi aljabar.

Kisi sebagai himpunan berurutan sebagian

Jika (L, ≤) adalah himpunan berurutan sebagian (pohimpunan), dan SL adalah himpunan bagian arbitrer, maka elemen uL adalah sebagai batas atas dari S jika su untuk sS. Batas atas u dari S sebagai batas bagian atas, atau gabung, supremum, jika ux untuk batas atas x dari S. Satu himpunan dari batad atas terkecil, tidak lebih dari satu. Dualitas lL sebagai batas bawah dari S jika ls untuk sS. Batad bawah l dari S sebagai batas bawah terbesar, atau bertemu, minimal, jika xl untuk batad bawah x dari S.

Rangkaian urutan sebagian (L, ≤) disebut gabung-semikisi jika himpunan bagian dua elemen {a, b} ⊆ L memiliki gabungan (yaitu batas atas terkecil), dan disebut bertemu-semikisi jika himpunan bagian dua elemen memiliki pertemuan (yaitu batas bawah terbesar), dilambangkan dengan ab dan ab. (L, ≤) disebut kisi jika gabungan dan bertemu-semikisi. Definisi ∨ dan ∧ adalah operasi biner. Kedua operasi tersebut monoton dengan urutan: a1a2 dan b1b2 dengan a1b1a2b2 dan a1b1a2b2.

Argumen induksi bahwa himpunan bagian hingga tidak kosong dari kisi memiliki batas atas terkecil dan batas bawah terbesar. Dengan asumsi tambahan, kesimpulan lebih lanjut dimungkinkan; lihat Kompleknes (teori order) untuk diskusi lebih lanjut tentang subjek ini. Bagaimana dapat mengubah definisi di atas dalam kaitannya dengan keberadaan koneksi Galois diantara himpunan terurut sebagian terkait, pendekatan khusus untuk teori kategori pendekatan kisi, dan untuk analisis konsep formal.

Batas kisi adalah kisi dengan elemen terbesar (juga disebut elemen maksimum, atau atas, dan dilambangkan dengan 1, atau dengan ) dan elemen terkecil (juga disebut minimum, atau bawah, dilambangkan dengan 0 atau dengan ), yaitu

0 ≤ x ≤ 1 untuk x di L.

Kisi dibatasi dengan menambahkan elemen buatan terbesar dan terkecil, dan kisi hingga tidak kosong dibatasi, dengan gabungan (berurutan dengan gabung dan bertemu) dari semua elemen, dilambangkan dengan (berurutan ) dimana .

Himpunan berurutan sebagian adalah kisi hingga jika dan hanya jika himpunan elemen hingga (termasuk himpunan kosong) yaitu gabungan dan pertemuan. Untuk elemen x dari sebuah poset tirivial (adalah prinsip vacuous) dan , dan elemen poset adalah batas atas dan batas bawah dari himpunan kosong. Gabungan dari himpunan kosong adalah elemen terkecil , dan bertemu himpunan kosong adalah elemen terbesar . Asosiatif dan komutatifitas bertemu dan gabungan: gabungan dari gabungan himpunan berhingga sama dengan gabungan himpunan, dan dua kali, pertemuan gabungan himpunan hingga sama dengan pertemuan pertemuan himpunan, yaitu, untuk himpunan bagian hingga A dan B dari poset L,

dan

B adalah himpunan kosong,

dan

konsisten dengan .

Elemen kisi y dengan elemen penutup x, jika y > x, maka z adalah y > z > x.[1]

Kisi sebagai struktur aljabar

Kisi umum

Struktur aljabar , dari himpunan dan dua biner, operasi komutatif dan asosiatif , dan , adalah kisi jika identitas aksiomatik berikut untuk elemen disebut hukum absorpsi.

Dua identitas berikut sebagai aksioma, keduanya menggunakan dua hukum absorpsi.[note 1] Maka ini disebut hukum idempoten.

Aksioma menggunakan dan adalah semikisi. Hukum absorpsi, dari aksioma di atas di mana keduanya bertemu dan bergabung, membedakan kisi dari sembarang struktur semikisi dan memastikan bahwa dua semikisi berinteraksi dengan tepat. Secara khusus, setiap semikisi adalah dualitas dari yang lain.

Kisi hingga

Kisi hingga adalah struktur aljabar dengan bentuk dan adalah kisi (kisi bawah) dari elemen identitas untuk operasi penggabungan , dan (bagian atas kisi) adalah elemen identitas untuk operasi meet .

Lihat semikisi untuk informasi lebih lanjut.

Koneksi ke struktur aljabar lainnya

Kisi memiliki beberapa koneksi ke relasi struktur aljabar grup. Karena bertemu dan bergabung dengan komute dan asosiasi, kisi dapat dianggap terdiri dari dua komutatif semigrup yang memiliki domain yang sama. Untuk kisi hingga, semigrup sebenarnya adalah komutatif monoid. Hukum absorpsi adalah identitas penentu dalam teori kisi.

Dengan komutatifitas, asosiatif, dan idempotensi, gabung dan bertemu sebagai operasi pada himpunan hingga tidak kosong, bukan pada relasi elemen. Dalam kisi hingga, gabungan dan pertemuan dari himpunan kosong juga mendefinisikan (sebagai dan ). Hal ini membuat kisi hingga dari kisi umum, dan banyak penulis mengharuskan semua kisi menggunakan batas.

Interpretasi aljabar kisi antara peran penting dalam aljabar universal.

Relasi antara dua definisi

Kisi teori-orde antara dua operasi biner ∨ dan ∧. Karena hukum komutatif, asosiatif dan absorpsi dengan diverifikasi untuk operasi, maka (L, ∨, ∧) dalam kisi dalam arti aljabar.

Kebalikannya, dengan kisi ditentukan aljabar (L, ∨, ∧), satu menentukan urutan parsial ≤ di L dengan

ab jika a = ab, atau
ab jika b = ab,

untuk elemen a dan b dari L. Hukum absorpsi bahwa kedua definisi adalah ekuivalen:

a = ab dengan b = b ∨ (ba) = (ab) ∨ b = ab

dan dualitas untuk arah lain.

Relasi ≤ digunakan untuk mendefinisikan urutan parsial di mana biner bertemu dan bergabung diberikan melalui operasi asli ∨ dan ∧.

Karena dua definisi kisi adalah ekuivalen, dengan menggunakan aspek dari kedua definisi tersebut dengan tujuan digunakan.

Contoh

  • Untuk himpunan A, himpunan bagian dari A (disebut himpunan pangkat dari A) urutan himpunan bagian inklusi untuk kisi hingga A dengan himpunan kosong. Himpunan perpotongan dan satuan menafsirkan bertemu dan bergabung (lihat Gambar 1).
  • Untuk himpunan A, himpunan bagian hingga dari A, diurutkan dengan penyertaan, juga merupakan kisi, dan dibatasi jika dan hanya jika A hingga.
  • Untuk himpunan A, diurutkan dengan partisi adalah kisi (lihat Gambar 3).
  • Bilangan bulat positif dalam urutan membentuk kisi, di bawah operasi "min" dan "max". 1 bagian bawah; tidak memiliki bagian atas (lihat Gambar 4).
  • Persegi Kartesius dari bilangan asli, diurutkan sehingga (a, b) ≤ (c, d) jika ac dan bd. Relasi (0, 0) adalah elemen bawah; tidak memiliki bagian atas (lihat Gambar 5).
  • Bilangan asli dari bentuk kisi di bawah operasi pembagi persekutuan terbesar dan kelipatan persekutuan terkecil, dengan persekutuan sebagai relasi urutan: ab jika a membagi b maka 1 bagian bawah; 0 teratas. Gambar 2 menunjukkan subkisi hingga.
  • Kisi kompleks adalah kisi hingga (spesifik). Kelas dari praktisi contoh.
  • Himpunan elemen kompak dari aritmetika kisi kompleks adalah kisi dengan elemen terkecil, dimana operasi kisi dengan membatasi operasi kisi aritmetika. Sifat khusus yang membedakan kisi aritmetika dari kisi aljabar, dimana pemadatannya hanya membentuk gabungan-semikisi. Kedua kelas kisi kompleks dipelajari di teori domain.

Contoh kisi lebih lanjut untuk sifat tambahan yang dibahas di bawah ini.

Contoh non-kisi

Gambar 8: Poset non-kisi: a dan b memiliki batas bawah yang sama 0, d, g, h, dan i, tetapi tidak memiliki batas bawah terbesar.
Gambar 7: Poset non-kisi: b dan c memiliki batas atas yang sama d, e, dan f, tidak yang merupakan batas atas terkecil .
Gambar 6: Poset non-kisi: c dan d tidak memiliki batas atas yang sama.

Sebagian besar rangkaian yang diurutkan sebagian bukanlah kisi, termasuk berikut ini.

  • Poset diskrit, artinya poset xy dengan x = y, adalah kisi jika dan hanya jika memiliki banyak satu elemen. Secara khusus, poset diskrit dua elemen bukanlah kisi.
  • Maka himpunan {1, 2, 3, 6} sebagian diurutkan berdasarkan pembagian adalah kisi, himpunan {1, 2, 3} jadi bukan kisi karena urutan 2, 3 tidak memiliki gabungan; maka, 2, 3 tidak memiliki pertemuan {2, 3, 6}.
  • Himpunan {1, 2, 3, 12, 18, 36} sebagian urutan pembagian bukan kisi. Bagian elemen memiliki batas atas dan batas bawah, tetapi 2, 3 memiliki tiga batas atas, yaitu 12, 18, dan 36, tidak memiliki terkecil dari ketiga yang dapat dibagi. Bagian 12, 18 memiliki tiga batas bawah, yaitu 1, 2, dan 3, tidak memiliki bagian terbesar dari ketiganya yang dapat dibagi (2 dan 3 tidak saling membagi).

Morfisme kisi

Gambar 9: Peta monotonik f antara kisi gabungan atau pertemuan, karena f(u) ∨ f(v) = u′ ∨ u = u′ ≠ 1′ = f(1) = f(uv) dan f(u) ∧ f(v) = u′ ∧ u = u′ ≠ 0′ = f(0) = f(uv).

Gagasan tentang morfisme antara dua kisi mengalir dengan mudah dari definisi aljabar atas. Maka dua kisi (L, ∨L, ∧L) dan (M, ∨M, ∧M), kisi homomorfisme dari L menjadi M adalah fungsi f : LM untuk a, bL:

f(aL b) = f(a) ∨M f(b), dan
f(aL b) = f(a) ∧M f(b).

Jadi f adalah homomorfisme dari dua semikisi. Jika kisi dengan struktur. Secara khusus, homomorfisme kisi berbatas (biasanya disebut "homomorfisme kisi") f antara dua kisi berbatas L dan M memiliki sifat berikut:

f(0L) = 0M , and
f(1L) = 1M .

Dalam rumus teori-ordo, bahwa homomorfisme kisi adalah fungsi pengawetan pertemuan dan penggabungan biner. Untuk kisi berbatas, penggunaan elemen terkecil dan terbesar gabungan dan pertemuan himpunan kosong.

Homomorfisme kisi monoton dengan relasi keteraturan terkait; lihat Fungsi pemeliharaan batas. Kebalikannya tidak benar: monotonisitas tidak menggunakan untuk bertemu dan bergabung (lihat Gambar 9), meskipun pemelihara order bijeksi adalah homomorfisme dari fungsi pembalikan.

Maka dan antara dua kisi dengan 0 dan 1. Homomorfisme dari ke disebut separating-0,1 jika dan hanya jika ( yaitu 0) dan ( yaitu 1).

Lihat pula

Aplikasi yang menggunakan teori kisi

Perhatikan bahwa dalam banyak aplikasi, set hanya berupa kisi parsial: tidak elemen memiliki pertemuan atau penggabungan.

Catatan

  1. ^ aa = a ∨ (a ∧ (aa)) = a, dan dua kali untuk hukum idempoten lainnya.Dedekind, Richard (1897), "Über Zerlegungen von Zahlen durch ihre grössten gemeinsamen Teiler", Braunschweiger Festschrift: 1–40 .

Referensi

  1. ^ Grätzer 1996, hlm. 52.

Monographs available free online:

Elementary texts recommended for those with limited mathematical maturity:

  • Donnellan, Thomas, 1968. Lattice Theory. Pergamon.
  • Grätzer, George, 1971. Lattice Theory: First concepts and distributive lattices. W. H. Freeman.

The standard contemporary introductory text, somewhat harder than the above:

Advanced monographs:

On free lattices:

On the history of lattice theory:

On applications of lattice theory:

  • Garrett Birkhoff (1967). James C. Abbot, ed. What can Lattices do for you?. Van Nostrand.  Table of contents

Pranala luar

Read other articles:

artikel ini perlu dirapikan agar memenuhi standar Wikipedia. Tidak ada alasan yang diberikan. Silakan kembangkan artikel ini semampu Anda. Merapikan artikel dapat dilakukan dengan wikifikasi atau membagi artikel ke paragraf-paragraf. Jika sudah dirapikan, silakan hapus templat ini. (Pelajari cara dan kapan saatnya untuk menghapus pesan templat ini) Halaman ini berisi artikel tentang kota di Toscana, Italia. Untuk karakter dalam seri novel Harry Potter, lihat Firenze (Harry Potter). FirenzeKom...

 

Cekakak sungai Status konservasi Risiko Rendah (IUCN 3.1)[1] Klasifikasi ilmiah Kerajaan: Animalia Filum: Chordata Kelas: Aves Ordo: Coraciiformes Famili: Alcedinidae Genus: Todirhamphus Spesies: T. chloris Nama binomial Todiramphus chloris(Boddaert, 1783) Sinonim Halcyon chloris Todirhamphus chloris Cekakak sungai (bahasa Latin = Todirhamphus chloris) adalah spesies burung dari keluarga Alcedinidae, dari genus Todirhamphus. Burung ini merupakan jenis burung pemakan kadal, ...

 

Agence de gestion et de recouvrement des avoirs saisis et confisquésHistoireFondation 9 juillet 2010CadreSigle AGRASCType Établissement public administratifForme juridique Établissement public national à caractère administratifDomaines d'activité Confiscation, administration publique généraleSiège 2e arrondissement de Paris (98-102, rue de Richelieu)Pays  FranceOrganisationAffiliation Ministère de la Justice, ministère de l'Action et des Comptes publicsSite web www.justice.gou...

Toshiyuki NishidaNishida pada tahun 2018Nama asal西田 敏行Lahir04 November 1947 (umur 76)Fukushima, JepangKebangsaanJepangPekerjaanPemeran, EksekutifTahun aktif1967–sekarang Toshiyuki Nishida (西田 敏行code: ja is deprecated , Nishida Toshiyuki, lahir 4 November 1947) adalah pemeran Jepang. Ia memenangkan dua Japanese Academy Awards untuk pemeran pria terbaik, untuk The Silk Road (1988) dan Tsuribaka Nisshi 6 (1993). Ia juga memenangkan Blue Ribbon Award untuk pemera...

 

PausViktor IIIAwal masa kepausan24 Mei 1086Akhir masa kepausan16 September 1087PendahuluGregorius VIIPenerusUrbanus IIInformasi pribadiNama lahirDauferiusLahir±1026Benevento, ItaliaWafat16 September 1087Monte Cassino, ItaliaPaus lainnya yang bernama Viktor Viktor III, nama lahir Dauferius (Benevento, Italia, ±1026 – Monte Cassino, Italia, 16 September 1087), adalah Paus Gereja Katolik Roma sejak 24 Mei 1086 sampai 16 September 1087. lbs Paus Gereja Katolik Daftar paus grafik masa jabatan ...

 

Chemical compound LasofoxifeneClinical dataTrade namesFablynRoutes ofadministrationBy mouthDrug classSelective estrogen receptor modulatorATC codeG03XC03 (WHO) Identifiers IUPAC name (5R,6S)-6-phenyl-5-[4-(2-pyrrolidin-1-ylethoxy)phenyl]-5,6,7,8-tetrahydronaphthalen-2-ol CAS Number180916-16-9 NPubChem CID216416IUPHAR/BPS7542ChemSpider187585 YUNII337G83N988ChEBICHEBI:135938ChEMBLChEMBL328190 YCompTox Dashboard (EPA)DTXSID50171037 Chemical and physical dataFormulaC28H31...

Local government building in the United States Hamilton County CourthouseWestern front of the courthouseLocation within OhioGeneral informationLocation1000 Main Street,Cincinnati, Ohio 45202Coordinates39°6′25.67″N 84°30′37.09″W / 39.1071306°N 84.5103028°W / 39.1071306; -84.5103028Completed1915 The Hamilton County Courthouse is located in downtown Cincinnati, Ohio and contains the Hamilton County Common Pleas Court, the Municipal Court, Small Claims Court, a...

 

U.S. House district for Virginia Virginia's 3rd congressional districtInteractive map of district boundaries since 2023Representative  Bobby ScottD–Newport NewsDistribution95.01% urban[1]4.99% ruralPopulation (2022)781,088[2]Median householdincome$63,075[3]Ethnicity43.2% Black39.0% White8.4% Hispanic5.4% Two or more races3.0% Asian1.1% otherCook PVID+17[4] Virginia's 3rd congressional district from January 3, 2023 Virginia's third congressional district ...

 

Assyabaab BangilNama lengkapAssyabaab BangilBerdiri1920StadionStadion R. SoedarsonoBangil, Pasuruan(Kapasitas: 10.000)PemilikPSSI Kabupaten PasuruanKetuaMohammad BahalwanLigaLiga 32017Posisi ke-5 Grup zona Jawa TimurSitus webSitus web resmi klub Kostum kandang Kostum tandang Assyabaab Bangil adalah klub sepak bola amatir yang bermarkas di Stadion R. Soedarsono, Pogar, Bangil, Kabupaten Pasuruan. Assyabaab Bangil saat ini berkompetisi di Liga 3 Zona Jawa Timur.[1] Referensi ^ 41 K...

Quartiere ValsesiaLocalizzazioneStato Italia RegioneLombardia LocalitàMilano Coordinate45°27′14.4″N 9°05′53.05″E / 45.454°N 9.09807°E45.454; 9.09807Coordinate: 45°27′14.4″N 9°05′53.05″E / 45.454°N 9.09807°E45.454; 9.09807 Informazioni generaliCondizioniIn uso CostruzioneAnni '70 UsoResidenziale RealizzazioneCommittenteACLI Modifica dati su Wikidata · Manuale Quartiere Valsesia è un complesso di edilizia residenziale di Milan...

 

† Египтопитек Реконструкция внешнего вида египтопитека Научная классификация Домен:ЭукариотыЦарство:ЖивотныеПодцарство:ЭуметазоиБез ранга:Двусторонне-симметричныеБез ранга:ВторичноротыеТип:ХордовыеПодтип:ПозвоночныеИнфратип:ЧелюстноротыеНадкласс:Четвероно...

 

Сельское поселение России (МО 2-го уровня)Новотитаровское сельское поселение Флаг[d] Герб 45°14′09″ с. ш. 38°58′16″ в. д.HGЯO Страна  Россия Субъект РФ Краснодарский край Район Динской Включает 4 населённых пункта Адм. центр Новотитаровская Глава сельского пос�...

American baseball player, manager, and executive Baseball player Paul RichardsCatcher / ManagerBorn: (1908-11-21)November 21, 1908Waxahachie, Texas, U.S.Died: May 4, 1986(1986-05-04) (aged 77)Waxahachie, Texas, U.S.Batted: RightThrew: RightMLB debutApril 17, 1932, for the Brooklyn DodgersLast MLB appearanceSeptember 22, 1946, for the Detroit TigersMLB statisticsBatting average.227Home runs15Runs batted in155Managerial record923–901Winning %.506 TeamsA...

 

2020年夏季奥林匹克运动会波兰代表團波兰国旗IOC編碼POLNOC波蘭奧林匹克委員會網站olimpijski.pl(英文)(波兰文)2020年夏季奥林匹克运动会(東京)2021年7月23日至8月8日(受2019冠状病毒病疫情影响推迟,但仍保留原定名称)運動員206參賽項目24个大项旗手开幕式:帕维尔·科热尼奥夫斯基(游泳)和马娅·沃什乔夫斯卡(自行车)[1]闭幕式:卡罗利娜·纳亚(皮划艇)&#...

 

Национальное аэрокосмическое агентство Азербайджана Штаб-квартира Баку, ул. С. Ахундова, AZ 1115 Локация  Азербайджан Тип организации Космическое агентство Руководители Директор: Натиг Джавадов Первый заместитель генерального директора Тофик Сулейманов Основание Осн�...

This article includes a list of references, related reading, or external links, but its sources remain unclear because it lacks inline citations. Please help improve this article by introducing more precise citations. (September 2020) (Learn how and when to remove this message) The Port Olímpic (English: Olympic Harbour) is a marina located in Barcelona, Catalonia. Located east of the Port of Barcelona, it hosted the sailing events for the 1992 Summer Olympics. It will be the main venue for ...

 

В Википедии есть статьи о других людях с такой фамилией, см. Носов; Носов, Сергей. Сергей Носов Дата рождения 19 февраля 1957(1957-02-19) (67 лет) Место рождения Ленинград Гражданство  СССР  Россия Образование Литературный институт имени А. М. ГорькогоСанкт-Петербургский госуд�...

 

У этого термина существуют и другие значения, см. Тала. Тала[a] самоан. Tālā англ. Tala[b] фр. Tala[b] 1 тала 1972 года1 тала 1976 года Коды и символы Коды ISO 4217 WST (882) Символы $ • WS$ Аббревиатуры SAT, ST, T Территория обращения Страна-эмитент  Самоа Производные и параллел�...

هذه مقالة غير مراجعة. ينبغي أن يزال هذا القالب بعد أن يراجعها محرر؛ إذا لزم الأمر فيجب أن توسم المقالة بقوالب الصيانة المناسبة. يمكن أيضاً تقديم طلب لمراجعة المقالة في الصفحة المخصصة لذلك. (نوفمبر 2020) هذه المقالة يتيمة إذ تصل إليها مقالات أخرى قليلة جدًا. فضلًا، ساعد بإضافة �...

 

High schoolLiceo Industrial de San FernandoLocationSan Fernando, ChileInformationTypeHigh school Liceo Industrial de San Fernando (English: San Fernando Industrial High School) is a Chilean high school located in San Fernando, Colchagua Province, Chile.[1] References ^ Tabla de Directorio Oficial de Establecimientos Año 2010 (in Spanish). Ministry of Education (Chile). December 2010. Archived from the original on 29 September 2017. Retrieved 5 July 2012. This Chilean school-related a...