Bauhinia blakeana bunga di bendera wilayah Hong Kong memiliki simetri C 5 ; bintang di setiap kelopak memiliki simetri D 5 .
Yin dan Yang simbol memiliki geometri simetri C 2 dengan warna terbalik
Dalam geometri, grup titik adalah grup geometris simetri (isometri) yang menjaga setidaknya satu titik tetap. Kelompok titik dapat ada dalam ruang Euklides dengan dimensi apa pun, dan setiap kelompok titik dalam dimensi d adalah subkelompok dari grup ortogonal O(d). Kelompok titik dapat direalisasikan sebagai himpunan matriks ortogonal M yang mengubah titik x menjadi titik y :
y = Mx
dimana asal adalah titik tetap. Elemen kelompok titik dapat berupa rotasi (determinan dari M = 1) atau yang lain refleksi, atau rotasi tidak tepat (determinan dari M = −1).
Kelompok titik dapat diklasifikasikan ke dalam kelompok kiral (atau rotasi murni) dan kelompok akiral .[1]
Gugus kiral adalah subgrup dari grup ortogonal khusus SO( d ): grup ini hanya berisi transformasi ortogonal yang mempertahankan orientasi, yaitu, determinan +1. Gugus akiral juga mengandung transformasi determinan −1. Dalam gugus akiral, transformasi yang mempertahankan orientasi membentuk subgrup (kiral) dari indeks 2.
Grup Coxeter Hingga atau kelompok refleksi adalah kelompok titik yang dihasilkan murni oleh sekumpulan cermin pantul yang melewati titik yang sama. Grup peringkat n Coxeter memiliki mirror n dan diwakili oleh diagram Coxeter-Dynkin. Notasi Coxeter menawarkan notasi tanda kurung yang setara dengan diagram Coxeter, dengan simbol markup untuk rotasi dan grup titik subsimetri lainnya. Kelompok refleksi harus akiral (kecuali untuk grup trivial yang hanya mengandung elemen identitas).
Daftar grup titik
Artikel ini sedang dalam perbaikan. CATATAN: Bagian ini terdapat masalah dan belum diterjemahkan. Untuk menghindari konflik penyuntingan, mohon jangan melakukan penyuntingan selama pesan ini ditampilkan. Halaman ini terakhir disunting oleh InternetArchiveBot (Kontrib • Log) 536 hari 465 menit lalu.
Satu dimensi
Hanya ada dua grup titik satu dimensi, yaitu grup identitas dan kelompok refleksi.
Siklik: n - rotasi lipat. Grup abstrak Z n , grup bilangan bulat di bawah penambahan modulo n .
Dn
nm
*n•
[n]
2n
Dihedral: siklik dengan refleksi. Grup abstrak Dihn, grup dihedral.
Himpunan bagian dari grup titik pantulan murni, yang ditentukan oleh 1 atau 2 mirror, juga dapat diberikan oleh grup Coxeter dan poligon terkait. Ini termasuk 5 kelompok kristalografi. Simetri kelompok pantulan dapat digandakan dengan isomorphism, memetakan kedua cermin satu sama lain dengan cermin membagi dua, menggandakan simetri.
Mereka datang dalam 7 kelompok tak terbatas dari kelompok aksial atau prismatik, dan 7 kelompok polihedral atau Platonis tambahan. Dalam Notasi Schönflies, *
(*) Ketika entri Intl digandakan, yang pertama untuk genap n , yang kedua untuk ganjil n .
Grup refleksi
Kelompok titik refleksi, ditentukan oleh 1 sampai 3 bidang cermin, juga dapat diberikan oleh grup Coxeter dan polihedra terkait. Grup [3,3] dapat digandakan, ditulis sebagai [[ 3,3]], memetakan cermin pertama dan terakhir satu sama lain, menggandakan simetri menjadi 48, dan isomorfik ke grup [4,3].
The four-dimensional point groups (chiral as well as achiral) are listed in Conway and Smith,[1] Section 4, Tables 4.1-4.3.
The following list gives the four-dimensional reflection groups (excluding those that leave a subspace fixed and that are therefore lower-dimensional reflection groups). Each group is specified as a Coxeter group, and like the polyhedral groups of 3D, it can be named by its related convex regular 4-polytope. Related pure rotational groups exist for each with half the order, and can be represented by the bracket Coxeter notation with a '+' exponent, for example [3,3,3]+ has three 3-fold gyration points and symmetry order 60. Front-back symmetric groups like [3,3,3] and [3,4,3] can be doubled, shown as double brackets in Coxeter's notation, for example [[3,3,3]] with its order doubled to 240.
The following table gives the five-dimensional reflection groups (excluding those that are lower-dimensional reflection groups), by listing them as Coxeter groups. Related chiral groups exist for each with half the order, and can be represented by the bracket Coxeter notation with a '+' exponent, for example [3,3,3,3]+ has four 3-fold gyration points and symmetry order 360.
The following table gives the six-dimensional reflection groups (excluding those that are lower-dimensional reflection groups), by listing them as Coxeter groups. Related pure rotational groups exist for each with half the order, and can be represented by the bracket Coxeter notation with a '+' exponent, for example [3,3,3,3,3]+ has five 3-fold gyration points and symmetry order 2520.
The following table gives the seven-dimensional reflection groups (excluding those that are lower-dimensional reflection groups), by listing them as Coxeter groups. Related chiral groups exist for each with half the order, defined by an even number of reflections, and can be represented by the bracket Coxeter notation with a '+' exponent, for example [3,3,3,3,3,3]+ has six 3-fold gyration points and symmetry order 20160.
The following table gives the eight-dimensional reflection groups (excluding those that are lower-dimensional reflection groups), by listing them as Coxeter groups. Related chiral groups exist for each with half the order, defined by an even number of reflections, and can be represented by the bracket Coxeter notation with a '+' exponent, for example [3,3,3,3,3,3,3]+ has seven 3-fold gyration points and symmetry order 181440.
^Grup Ruang Kristalografi dalam aljabar geometris, D. Hestenes and J. Holt, Journal of Mathematical Physics. 48, 023514 (2007) (22 pages) PDF[1]Diarsipkan 2020-10-20 di Wayback Machine.