Alen Halilović
|
Read other articles:
Keluarga Ikan BaungRentang fosil: 56–0 jtyl PreЄ Є O S D C P T J K Pg N Eosen – sekarang[1] Hemibagrus nemurus Klasifikasi ilmiah Kerajaan: Animalia Filum: Chordata Kelas: Actinopterygii Ordo: Siluriformes Superfamili: Bagroidea Famili: BagridaeBleeker, 1858 Genera Bagrichthys Bagroides Bagrus Batasio Chandramara Coreobagrus Eomacrones (punah) Gobibagrus (punah) Hemibagrus Hemileiocassis Horabagrus Hyalobagrus Leiocassis Mystus Nanobagrus Nigerium (punah) Nk...
Artikel ini sebatang kara, artinya tidak ada artikel lain yang memiliki pranala balik ke halaman ini.Bantulah menambah pranala ke artikel ini dari artikel yang berhubungan atau coba peralatan pencari pranala.Tag ini diberikan pada April 2016. Ini adalah daftar maskapai penerbangan yang saat ini beroperasi di Samoa. Maskapai penerbangan IATA ICAO Tanda panggil Mulaiberoperasi Catatan Polynesian Airlines PH PAO POLYNESIAN 1959 Polynesian Blue DJ PBN BLUEBIRD 2005 Lihat pula Daftar maskapai pene...
Agusli TaherBiografiKelahiran9 Agustus 1951 (72 tahun)Seberang Palinggam Data pribadiKelompok etnikOrang Minangkabau PendidikanUniversitas Andalas Institut Pertanian Bogor University of the Philippines Los Baños KegiatanPekerjaanPenulis lagu dan agronom Dr. Ir. Agusli Taher, MS (lahir 9 Agustus 1951) adalah seorang pencipta lagu Minang dan ahli pertanian. Ia merupakan pendiri perusahaan rekaman Pitunang Record yang banyak mengorbitkan penyanyi Minang di Sumatera Barat. Ia merupakan pencipta ...
Часть серии статей о Холокосте Идеология и политика Расовая гигиена · Расовый антисемитизм · Нацистская расовая политика · Нюрнбергские расовые законы Шоа Лагеря смерти Белжец · Дахау · Майданек · Малый Тростенец · Маутхаузен ·&...
Acute sense of self-awareness, a preoccupation with oneself Not to be confused with Self-awareness, Self-concept, Self-image, or Self-perception theory. Part of a series onThe Self Constructs Self-knowledge (psychology) Self-image Self-concept Self-schema Theories Neural basis of self Self-categorization theory Processes Self-perception theory Self-awareness Self-reflection Self-consciousness Value judgment Self-esteem True self and false self As applied to activities Self-assessment Self-eff...
ريتشارد باريت لوي معلومات شخصية الميلاد 8 يوليو 1902 ماديسون الوفاة 16 أبريل 1972 (69 سنة) الإسكندرية مواطنة الولايات المتحدة مناصب حاكم ساموا الأمريكية في المنصب5 أغسطس 1953 – 15 أكتوبر 1956 حاكم غوام في المنصب2 أكتوبر 1956 – 9 يوليو 1960 ويليام ك...
Five British Group 1 horse races for three-year-olds Sceptre, the only outright winner of four classics, painted by Emil Adam The British Classics are five long-standing Group 1 horse races run during the traditional flat racing season.[1] They are restricted to three-year-old horses and traditionally represent the pinnacle of achievement for racehorses against their own age group. As such, victory in any classic marks a horse as amongst the very best of a generation. Victory in two o...
Educational video game console Not to be confused with PICO 4. Sega PicoAlso known asKids Computer PicoManufacturerSega ToysTypeVideo game consoleGenerationFourth generation eraRelease dateJP: June 1993NA: November 1994EU: 1994KOR: 1995Introductory priceJP¥13,440US$139CN¥690US$49.95 (Majesco)DiscontinuedEU: 1998NA: February 1998KOR: 2002JP: 2005Units soldJP: 3.4 millionNA: 400,000 (as of January 1996)MediaStoryware (Cartridge)CPUMotorola 68000 @ 7.6 MHzMemory64 KB RAM, 64 KB ...
Win Myintဝင်းမြင့် Presiden MyanmarMasa jabatan28 Maret 2018 – 1 Februari 2021Penasihat NegaraAung San Suu KyiWakil PresidenMyint Swe Henry Van ThioPendahuluHtin KyawMyint Swe (penjabat)PenggantiMyint Swe (penjabat)Ketua Dewan Perwakilan MyanmarMasa jabatan1 Februari 2016 – 21 Maret 2018WakilT Khun MyatPendahuluShwe MannPenggantiT Khun MyatAnggota Pyithu Hluttawuntuk Kotapraja TamweMasa jabatan1 Februari 2016 – 23 Maret 2018PendahuluLei Lei W...
Emirate of Aleppo dynasty from 1024 to 1080 Mirdasid dynastyمرداسيون1024–1080Map of the Mirdasid emirate at its zenith during the rule of Salih ibn Mirdas in 1025CapitalAleppoCommon languagesArabicReligion Shia IslamGovernmentEmirateEmir • 1024–1029 Salih ibn Mirdas• 1029–1038 Shibl al-Dawla Nasr• 1042–1062 Mu'izz al-Dawla Thimal History • Established 1024• Disestablished 1080 CurrencyDirham, dinar Preceded by Succeeded by Fati...
Эту страницу предлагается переименовать в «Буи, Марк».Пояснение причин и обсуждение — на странице Википедия:К переименованию/29 марта 2023. Пожалуйста, основывайте свои аргументы на правилах именования статей. Не удаляйте шаблон до подведения итога обсуждения. Переимен...
Ini adalah nama Tionghoa-Indonesia, marganya adalah Lie (李) Laksamana Muda TNI (Purn.)John Lie Informasi pribadiLahirLie Tjeng Tjoan (李正泉)(1911-03-09)9 Maret 1911[1]Menado, Celebes, Hindia BelandaMeninggal27 Agustus 1988(1988-08-27) (umur 77)Jakarta, IndonesiaSebab kematianStrokeSuami/istriMargaretha Dharma AngkuwOrang tuaLie Kae Tae (bapak)Oei Tjeng Nie Nio (ibu)ProfesiTentaraPenghargaan sipilPahlawan Nasional IndonesiaAgamaKristen ProtestanKarier militerPihak...
هذه المقالة بحاجة لصندوق معلومات. فضلًا ساعد في تحسين هذه المقالة بإضافة صندوق معلومات مخصص إليها. الجرجار هو زي نسائي نوبي عبارة عن رداء شفاف يصل طوله الكعبين من الأمام ولكن يذداد من الخلف فعند سير المرأة يخفي اثآر أقدامها [1] ويصنع من الدانتيلا الأسود أو الشيفون ذو أكم...
Esta página cita fontes, mas que não cobrem todo o conteúdo. Ajude a inserir referências. Conteúdo não verificável pode ser removido.—Encontre fontes: ABW • CAPES • Google (N • L • A) (Fevereiro de 2020) Campeonato Italiano de Futebol 2015–2016 Lega Calcio Serie A 2015-16 Dados Participantes 20 Organização Lega Serie A Local de disputa Itália Período 11 de setembro de 2015 – 22 de maio de 2016 Gol(o)s 979 Partida...
Music and dance school in Paris, France This article may be in need of reorganization to comply with Wikipedia's layout guidelines. Please help by editing the article to make improvements to the overall structure. (April 2024) (Learn how and when to remove this message) Conservatoire de ParisConservatoire national supérieur de musique et de danse de Paris (CNSMDP)TypeGrande écoleEstablished1795; 229 years ago (1795)AffiliationPSL UniversityDirectorÉmilie Delorme[1]...
Rotten TomatoesURLrottentomatoes.comTipeFilm dan televisi Aggregator pengulas and Komunitas penggunaBersifat komersial?YesPendaftaranOptionalBahasaInggris Online Computer Library Center48768329PemilikFandango Media:WarnerMedia (25%)NBCUniversal (75%)[1]Berdiri sejak12 Agustus 1998; 25 tahun lalu (1998-08-12)Lokasi kantor pusatSan Francisco NegaraAmerika Serikat Peringkat Alexa▲ 658 (April 2019[update]) [2][3][4] Rotten Tomatoes adalah situs web y...
All About LuvAlbum studio karya Monsta XDirilis14 Februari 2020 (2020-02-14)GenrePop R&B[1]Durasi33:05LabelEpicKronologi Monsta X Follow: Find You(2019) All About Luv(2020) Fantasia X(2020) Singel dalam album All About Luv Who Do U Love?Dirilis: 14 Juni 2019 Love UDirilis: 20 September 2019 Someone's SomeoneDirilis: 4 Oktober 2019 Middle Of The NightDirilis: 6 Desember 2019 You Can't Hold My HeartDirilis: 17 April 2020 Penilaian profesional Skor ulasan Sumber Nilai Metro ...
Former state electoral district of New South Wales, Australia Willyama was an electoral district for the Legislative Assembly in the Australian State of New South Wales named after the original aboriginal name for the Broken Hill area. It included southern Broken Hill and sparsely occupied areas further south. Since 1904 all of the town was in the district of Broken Hill, surrounded by the rural district of Sturt. In the 1912 redistribution north Broken Hill was in Sturt, while Willyama was c...
Cellular body type This article is about the cellular body type. For the genus, see Amoeba (genus). For other uses, see Amoeba (disambiguation). Clockwise from top right: Amoeba proteus, Actinophrys sol, Acanthamoeba sp., Nuclearia thermophila., Euglypha acanthophora, neutrophil ingesting bacteria. An amoeba (/əˈmiːbə/; less commonly spelled ameba or amœba; pl.: amoebas (less commonly, amebas) or amoebae (amebae) /əˈmiːbi/),[1] often called an amoeboid, is a type of cell or un...
Centered figurate number that represents a heptagon with a dot in the center A centered heptagonal number is a centered figurate number that represents a heptagon with a dot in the center and all other dots surrounding the center dot in successive heptagonal layers. The centered heptagonal number for n is given by the formula 7 n 2 − 7 n + 2 2 {\displaystyle {7n^{2}-7n+2} \over 2} . The first few centered heptagonal numbers are 1, 8, 22, 43, 71, 106, 148, 197, 253, 316, 386, 463, 547, ...