Az euklideszi norma egyes multiplikatív csoportokon és ezeket tartalmazó algebrai struktúrákban definiálható norma. Lényegében egy pont origótól való távolságát adja meg. Szokás 2-normának is nevezni, mivel a Hölder-normák között a 2 kitevőjű norma:
Az euklideszi norma a valós számok halmazán az abszolútértékkel lesz egyenértékű. Mi több, a normák elméletét éppen az abszolútérték motiválta.
Ha egy vektortéren skaláris szorzat is van értelmezve, akkor a vektortéren az euklideszi norma értelmezhető:
.
Források
Kristóf János: Matematikai analízis. [2021. január 12-i dátummal az eredetiből archiválva]. (Hozzáférés: 2021. január 9.)
I. N., Bronstejn, K. A. Szemengyajev, G. Musiol, H. Mühlig. Matematikai kézikönyv. Typotex (2000)