Az algebrai gráfelmélet második ága kapcsolódik az elsőhöz, hiszen a gráf szimmetriatulajdonságai megjelennek a gráf spektrumában is. Az erősen szimmetrikus gráfok, mint a Petersen-gráf, spektrumában kevés különböző érték található[1] (a Petersen-gráf esetén csak 3, ami adott átmérő mellett a minimális érték). A Cayley-gráfok spektruma közvetlenül kapcsolódik a csoport szerkezetéhez, különösen annak irreducibilis karaktereihez.[1][3]
Gráfinvariánsok tanulmányozása
Végül az algebrai gráfelmélet harmadik ága a gráfok invariánsainak algebrai tulajdonságaival foglalkozik, különösen a kromatikus polinommal, a Tutte-polinommal és a csomóinvariánsokkal. Egy gráf kromatikus polinomja a gráf jó csúcsszínezéseit számolja meg. A Petersen-gráf esetében ez a polinom .[1] Ebben az esetben ez azt jelenti, hogy a Petersen-gráf nem jól színezhető egy vagy két színnel, három színnel viszont 120-féleképpen is. Ennek a területnek a fejlődését nagyban motiválták a négyszínsejtés bizonyítási kísérletei. Azóta is sok nyitott kérdés van a gráfszínezés területén, például az azonos kromatikus számú gráfok karakterizálása, illetve annak eldöntése, hogy adott polinom lehet-e egy gráf kromatikus polinomja.
Ez a szócikk részben vagy egészben az Algebraic graph theory című angol Wikipédia-szócikk ezen változatának fordításán alapul. Az eredeti cikk szerkesztőit annak laptörténete sorolja fel. Ez a jelzés csupán a megfogalmazás eredetét és a szerzői jogokat jelzi, nem szolgál a cikkben szereplő információk forrásmegjelöléseként.
Jegyzetek
↑ abcdeBiggs, Norman (1993), Algebraic Graph Theory (2nd ed.), Cambridge: Cambridge University Press, ISBN 0-521-45897-8
↑R. Frucht. Graphs of Degree 3 with given abstract group, Can. J. Math. 3 1949.