A számírás története

A számírás története az ember írásbelisége előtti korokra nyúlik vissza, legalábbis a legelső, mennyiség leírására alkalmazott jelölésre utaló nyom jóval régebbi, mint a legkorábbi írásra utaló emlék. Az előbbi ugyanis mintegy 300 000 éves, utóbbi nagyjából 8000.

Az mennyiségek nem szöveges leírásának igénye a birtokviszonyok, időszámítás és egyéb fogalmak kialakulásával egyidős. Ugyanakkor a nem szisztematikus fejlődésnek köszönhetően többször, többféle formában is megjelent az elmúlt évezredek során.

A legősibb írások esetén pusztán a mennyiségeket jelölték meg, esetleg némi csoportosítással. Ennek nyomai a beszélt és írott nyelvben a mai napig megvannak a számok megnevezésében. Ilyen például a magyar nyelvben a -száz, -ezer végződés a megfelelő számok esetén: háromezer-kilencszázötvennégy.

Ennek egy fejlettebb változata az alfabetikus számírás, amikor a betűk egyben számértéket is képviselnek. Az alfabetikus számírás a számmisztika áltudományában él tovább.

Egy másik irány, amikor a számok megnevezéséből rövidítéssel alakulnak ki a számjegyek, ennek legismertebb példája a hindu–arab számírás. Ennek további alakulása a helyiértékes számírás felé vezet el. Ebben már az Európában virágba szökkenő matematika járt elöl, így a földrészünkön honos írásrendszer lett elterjedt az egész világon.

Ősi eredet

A legősibb nyom, ami a számok megjelölésére utal, egy nagyjából 300 000 éves rovátkolt farkas combcsont. Ezen a rovátkák periodikusan, négy rövid és egy hosszú karcolás sorrendjében követik egymást. Ilyen rendszeres nyomot természetes sérülés nem okoz, ezért jogos a feltételezés, hogy a karcolások tudatos tevékenység eredményeképpen keletkeztek, azaz valaminek a megszámolásáról van szó.

Ezt a hipotézist alátámasztják a különböző, korábbi fejlettségi fokon álló természeti népeknél tapasztalt hasonló jelzések. A rendszer a mai napig tovább él, mivel egyszerűsége és igénytelensége bármikor használhatóvá teszi. A jelen időkben strigulázás néven ismerjük.

Az elgondolás némileg átalakult formában a későbbi korokban is megmaradt. Ilyen például az ókori Kínában alkalmazott számírás, ahol rövid és hosszú vonalak segítségével jelölték az egyes és tízes csoportok számát, illetve Mezopotámiában, ahol az ékírásos jelek felhasználásával alkották meg a számokat.

A mezopotámiai matematika fejlettségét jelzi, hogy ezen rendszer segítségével egészen komoly mennyiségeket is le tudtak írni. A matematika és az írásrendszer csúcsteljesítménye a √2 közelítő értékének a kiszámítása és leírása.

Mennyiségjelöléses írás

Az egyszerű leszámlálásnál, amikor nagyobb mennyiségeket kellett leírni, az ember csoportosítani kezdett. Ennek nyomait a számnevek a mai napig őrzik, illetve egyes, primitív szinten álló[* 1] népek számolásánál tetten érhető. Például az ausztrál bennszülöttek hármasával csoportosítva nevezik meg a mennyiségeket.

Ennek a számírásban is látható nyoma maradt. A nagyobb csoportokat újra számolva valahogyan jelölni kell azok megnövelt értékét is. Tehát minden új csoportra új jelet kell kitalálni. Ez lényegesen hatékonyabb, mint a puszta leszámlálás, ezért igen stabilan meg is maradt, gyakorlatilag a legújabb korig aktívan használtak ilyen írásrendszereket.

A sumerek számai 1-59-ig

Ilyen jellegű a sumer írás is, ahol 𒁹 jelöli az egyes és 𒌋 a tízes csoportokat. Ugyanakkor azonban hatvanasával számoltak, ami elég érdekes számírást valósított meg.

Magyarországon az ilyen jellegű írásmódok közül a rovásírás és a római számírás a legismertebb. Mindkettő tulajdonképpen ötösével csoportosít, bár a két ötös jelet egybevonja, így egy kereszt szimbólum alakul ki.[* 2]

A mennyiségjelöléses írásmód lényegesen tömörebb leírást tesz lehetővé, mint az egyszerű strigulázás, azonban a puszta számíráson túllépve problémássá válik:

  • minden új csoportnak új jelölés kell, ami nagy számok leírását nehézzé teszi;
  • a műveletvégzés körülményes, bonyolult.[* 3]

Ennek ellenére igen hosszú időszakon keresztül uralkodó volt, egyes területeken mind a mai napig használjuk, bár ezek a puszta számírásnál többet nem igényelnek. Mondhatjuk tehát, hogy a használatuk egyszerű „civilizációs tehetetlenségre” vezethető vissza.

Alfabetikus számok

Egy nagyon érdekes, a helyi értékes és a mennyiségjelöléses számírás közötti átmeneti jellegű írásmód, amikor nem alkotunk a számokra külön jelöléseket, hanem az ábécé betűit vesszük igénybe. Erre is a motivációt tulajdonképpen a sumer írás jelenthette, hiszen az ő számaik is a betűket alkotó jelekből lettek összerakva. A két leggyakoribb az óhéber és az ógörög írás. Mindkettő ábécéje 27 jelből áll, ez ösztönzi a tízesével csoportosítást: az első kilenc betű értéke 1-9-ig terjed, a következő kilencé tízesével 10-90-ig, majd az utolsó csoport 100-900-ig százasával számolva.

Ez a rendszer a térség több területén is megjelent, mivel kellően egyszerű volt a használathoz. Ugyanezért volt azonban kissé problémás néhány ősi, kihalt nyelv írásos emlékeinek megfejtése, ugyanis a számokat jelölő betűcsoportok a szövegben nem voltak kiemelve, így az első kísérletek során szavaknak vélték őket. Kiolvasásuk azonban körülményes, esetenként lehetetlen volt.

Az írásmódnak máig ható leszármazottja a számmisztika nevű áltudomány. Ez a különböző szavakhoz társított számértékekből próbál mindenféle következtetésekre jutni - természetesen mindennemű megalapozottság nélkül.

Az alfabetikus számírás egyik érdekes alkalmazása a matematikai logikai feladatok közé tartozik. Ebben az esetben valamilyen művelet elvégzésével betűcsoportokkal helyettesítjük a számokat. A feladat annak visszafejtése, hogy az egyes betűk milyen számjegyeket jelölnek. Érdekessé teszi ezt a betűcsoportok értelmes szavakká formázása, illetve valamilyen téma körér rendezése. Kifejezetten izgalmas feladat ilyen feladványok készítése.

Helyi értékes számírás

Tetszőleges nagyságú számok leírására a leghatékonyabb ismert módszer a helyi értékes írás. Ez véges sok jellel, a jelek számon belül elfoglalt helyétől függő értékének használatával oldható meg.

Ennek nyomai megint a sumer számírásnál keresendőek. A sumerek 1-59-ig gond nélkül leírták a számokat a hagyományos mennyiségjelölő módszerrel. Utána azonban megjelölték, hogy egy hatvanas csoport megtelt, de nem alkalmaztak külön jelet a nagyobb csoportra, hanem az egyes jelét használták. Tehát a △ egyszerre jelentett 1-et, 60-at és 3600-at is.[* 4] Amíg a szövegkörnyezetből kiderül, milyen nagyságrendű lehet a szám, ez nem jelent gondot. Probléma akkor merül fel, ha a számítások már függetlenednek a szövegtől. Tipikusan ilyenek a csillagászati számítások. A sumerek annak jelölésére, hogy egy hatvanas csoportot már egybe fogtak, az írónád tompa végét nyomták a számjel mellett az agyagba, így kaptak egy kis, kör alakú jelet. Ez a helyi értékes számírás alapelve.

Az írásrendszer (valószínűleg Nagy Sándor hódításai révén) átkerült Indiába. Ott egy alfanumerikusra emlékeztető számírást használtak: a számokat a nevük kezdőbetűjével jelölték. A két rendszer egybevetésével pedig elég volt az első néhány szám nevét használni, valamint a kör alakú jelet a kihagyott hely jelölésére.

Utóbbi jelet sokáig nem értelmezték számként, inkább egyfajta díszítő motívumként. A magyarba német közvetítéssel került, az eredeti „zifr“ szót a népetimológia kiegészítette, ebből született a magyar „cifra“ szó. Ezzel párhuzamosan igen komoly és hosszú filozófiai vitát is eredményezett, hogy valamit, ami nincs, hogyan lehet jelölni, van-e értelme jelölni.

A hindu számjegyek, egyszerű kezelhetőségük miatt gyors terjedésnek indultak, és ugyanakkor alakultak is. Emiatt három különböző íráskép is használatos a Föld különböző tájain, ebből számunkra legfontosabb az Európában használatos.

Az arabok a hódításaiknak köszönhetően eljutottak egyrészt Indiába kelet felé, másrészt az Ibériai-félszigetre. Mai értelem szerint egyetemeket alapítottak utóbbi területen, amik nem csak a birodalmuk, de egész Európa szellemi központjai lettek.[* 5] A Córdobai és sevillai egyetemen tanult Gerbert d'Aurillac, a későbbi II. Szilveszter pápa, aki innen hozta magával a hindu-arab számjegyeket. Ezzel nagy lökést adott az európai matematika fejlődésének, bár ez igazán mintegy 200 évvel később bontakozott ki.

1202-ben adta ki Leonardo di Pisa a Liber Abaci, amelyben bemutatta az új számírást, valamint az alkalmazásait. Mivel ennek révén a számítások nagymértékben megkönnyebbedtek, a könyv és a rendszer nagy sikert aratott, és terjedni kezdett. Ugyanakkor azonban konzervatív erők lassították e terjedést, így a számírás sokáig csak a pénzügyi és kereskedelmi területeken volt ismert.

Az új számjegyek első megjelenése Dürer metszetén.

A számok alakját végül Albrecht Dürer (festő) alakította ki. Ez egyben az írásmód végeleges győzelmét jelentette a mindennapokban is. Melankólia I című metszetén a jobb felső sarokban látható egy bűvös négyzet, amiben már a modern számjegyekkel leírt számok láthatóak. Mivel ez a legkorábbi ilyden forma, ezért feltételezhető, hogy Dürer maga alkotta meg eme jegyeket, valószínűleg a rézmetszésnek való megfelelés céljából.

A helyiértékes tízes számrendszer hatákonysága és egyszerűsége révén mára már gyakorlatilag a teljes bolygón elterjedt, kiszorította a legtöbb lokális írásrendszert.

Érdekességek

  • A legtöbb ősi számrendszer nem tízes alapú, holott azt gondolnánk logikusnak.
  • A régi számrendszerek emlékei mesékben is továbbélnek. Ilyen például a három (három testvér, három próba, háromfejű sárkány), az öt (szintén sárkányfejek), vagy a mágikus hetes (megint a sárkány).
  • Az ókori Kínában százas számrendszert használtak, ezt egy egészen különleges módon írták le, hosszú és rövid vízszintes vonalakat használva.
  • A Maja Birodalomban több szempontból is szokatlan számírást használtak.
    • A számjegyeket különböző arckifejezésű fejek jelölték.
    • Az írásrendszer 20-as alapú volt, azonban a második helyiérték csak 18-ig ment. Ennek oka, hogy a maják elsősorban naptárak készítésére használták a számokat, így az év napjait 20·18=360 számmal írták le. Öt napot az istenek ünneplésére használtak, így jön ki a 365 nap.
  • Egy legenda szerint Gerbert szerzetest egy fogadóban sátánimádónak vélték, mert a hindu-arab számok használatával abakusz és az ujjai nélkül tudott igen bonyolult számításokat végezni, pusztán a számok leírásával.

Megjegyzések

  1. Ez nem degradáló jelzőként értendő
  2. A közismert „IV“ és „IX“ jelöléseket a XV. században alkották meg óraépítő mesterek, hogy a fémrudakkal, amikből az órákat kirakták, spóroljanak. Ennek okán nincsen a 90-re és a 900-ra hasonló szerkezetű jel.
  3. A kora középkori iskolákban például csak összeadni és kivonni tanultak meg a diákok. a szorzás a mai középiskoláknak megfelelő szintű tananyag volt, az osztás pedig egyetemi.
  4. Ez az oka, hogy a kör 360°-os lett.
  5. Az európai tudásszintet mi sem jellemzi jobban, hogy a legtöbb uralkodó sem számolni, sem olvasni nem tudott, erre külön embereket alkalmaztak!

Jegyzetek

Források

  • Sain Márton. Nincs királyi út!. Gondolat (1986). ISBN 9632817044 
  • Sain Márton. Matematikatörténeti ábécé. Tankönyvkiadó (1987). ISBN 9631797163 
  • William Bynum. A mindenség története. Kossuth (2016). ISBN 9789630986120 
  • James Burke. A nap, amely megváltoztatta a világot ford.: Babits Péter:. Alexandra (1998). ISBN 963367395X 

További hivatkozások

Read other articles:

1983 single by WhitesnakeGuilty of LoveSingle by Whitesnakefrom the album Slide It In B-sideGamblerReleasedAugust 1983Recorded1983GenreHard rockLength3:18LabelLiberty RecordsSongwriter(s)David CoverdaleProducer(s)Eddie KramerWhitesnake singles chronology Victim of Love (1982) Guilty of Love (1983) Give Me More Time (1984) Guilty of Love is a song by the English rock band Whitesnake from their 1984 album Slide It In. Written by vocalist David Coverdale, he described the track as a very simple...

 

Konsonan getar hulu-kerongkongan bersuara(Konsonan geser katup-napas bersuara)ʢNomor IPA174Pengkodean karakterEntitas (desimal)&#674;Unikode (heks)U+02A2X-SAMPA<\Braille Gambar Sampel suaranoicon sumber · bantuan Konsonan desis hulu-kerongkongan bersuara adalah jenis dari suara konsonan katup-napas yang digunakan dalam berbagai bahasa. Simbol IPAnya adalah ⟨ʢ⟩. Dalam bahasa Indonesia tidak ada huruf yang mewakili [ʢ]. Fitur Karakteristik konsonan dari konsonan geta...

 

Music of the Arab World Part of a series onArabic culture ArchitectureStyles Islamic Yemeni Nabataean Umayyad Abbasid Fatimid Moorish Mamluk Features Ablaq Alfiz Arabesque Arabic dome Banna'i Gardens Girih Horseshoe arch Howz Hypostyle Islamic calligraphy Islamic geometric patterns Islamic ornament Iwan Liwan Mashrabiya Riad Mosaic Multifoil arch Muqarnas Nagash painting Qadad Reflecting pool Riwaq Sahn Socarrat Stucco decoration Tadelakt Vaulting Voussoir Windcatcher Zellij Types Albarrana t...

Borough in Estonia Borough in Rapla County, EstoniaKohilaBoroughKohila manorKohilaLocation in EstoniaCoordinates: 59°10′4″N 24°45′1″E / 59.16778°N 24.75028°E / 59.16778; 24.75028Country EstoniaCounty Rapla CountyMunicipality Kohila ParishPopulation (01.01.2006) • Total3,505 Drone video of Kohila bridges, watermill and town (June 2022) Kohila (formerly also Kapa-Kohila, German: Koil, Kappakoil) is a borough (Estonian: alev) in Rapla County, ...

 

Cet article est une ébauche concernant la protection des cultures. Vous pouvez partager vos connaissances en l’améliorant (comment ?) selon les recommandations des projets correspondants. Les maladies de la patate douce (Ipomoea batatas (L.) Lam.) sont nombreuses et peuvent affecter les plants en phase de culture, mais aussi les tubercules stockés. Elles sont causées par des agents pathogènes très divers : bactéries, champignons, protistes, virus, phytoplasmes, etc., par d...

 

Species of bird White-faced heron The white-faced heron in breeding plumage, in a characteristic resting pose. Conservation status Least Concern  (IUCN 3.1)[1] Scientific classification Domain: Eukaryota Kingdom: Animalia Phylum: Chordata Class: Aves Order: Pelecaniformes Family: Ardeidae Genus: Egretta Species: E. novaehollandiae Binomial name Egretta novaehollandiae(Latham, 1790) Synonyms Ardea novaehollandiae Notophoyx novaehollandiae The white-faced heron (Egretta novaeh...

Dioxyde de tellure Poudre de tellure et structure de α-TeO2. Identification No CAS 7446-07-359863-17-114832-87-2 No ECHA 100.028.357 No CE 231-193-1 PubChem 62638 SMILES O=[Te]=O PubChem, vue 3D InChI InChI : vue 3D InChI=1/O2Te/c1-3-2 InChIKey : LAJZODKXOMJMPK-UHFFFAOYAO Std. InChI : vue 3D InChI=1S/O2Te/c1-3-2 Std. InChIKey : LAJZODKXOMJMPK-UHFFFAOYSA-N Apparence solide blanc[réf. souhaitée] Propriétés chimiques Formule O2TeTeO2 Masse molaire[1] 159,6&...

 

Toyohiko KagawaLahir10 Juli 1888Kobe, JepangMeninggal23 April 1960KebangsaanJepangPekerjaanReformator sosial, aktivis perdamaian, aktivis buruh, pengabar Injil, penulis Toyohiko Kagawa (10 Juli 1888 – 23 April 1960) adalah seorang tokoh Kristen di Jepang yang memerlihatkan perhatian besar terhadap situasi sosial pada masanya.[1][2] Sejak tahun 1909, Kagawa memutuskan untuk tinggal bersama-sama orang miskin di sebuah daerah yang bernama Shinkawa.[1][...

 

Species of conifer Juniperus ashei J. ashei shedding pollen: mature male on right, immature tree on left, mature green females in background Conservation status Least Concern  (IUCN 3.1)[1] Scientific classification Kingdom: Plantae Clade: Tracheophytes Clade: Gymnospermae Division: Pinophyta Class: Pinopsida Order: Cupressales Family: Cupressaceae Genus: Juniperus Species: J. ashei Binomial name Juniperus asheiJ. Buchholz Natural range of Juniperus ashei Synonyms J. sabinoi...

В Википедии есть статьи о других людях с именем Иоиль.Иоиль, сын Вафуиладр.-евр. ‏יוֹאֵל בֶּן פְּתוּאֵל‏‎ Родился V век до н. э. (по другим оценкам, между IX и II вв до н. э.)Иудея В лике святой День памяти 19 октября  Медиафайлы на Викискладе Иои́ль (др.-евр. ‏יוֹאֵלR...

 

Questa voce sull'argomento film commedia è solo un abbozzo. Contribuisci a migliorarla secondo le convenzioni di Wikipedia. Segui i suggerimenti del progetto di riferimento. Fiorenzo, il terzo uomoManifesto pubblicitario attribuito a Corrado MancioliPaese di produzioneItalia Anno1951 Dati tecniciB/N Generedocumentario, commedia RegiaStefano Canzio ProduttoreIncom Distribuzione in italianoIncom Interpreti e personaggi Aldo Fabrizi: Renato Rascel: Nino Taranto: Mario Siletti: Silvio ...

 

Professional wrestling tag team This article is about the wrestling stable. For the website, see SoCal Uncensored (website). Professional wrestling tag team SoCal UncensoredDaniels and Kazarian, then known as The AddictionTag teamMembersChristopher Daniels[1]Frankie Kazarian / Kazarian[2]Scorpio SkyName(s)The AddictionBad InfluenceLegion of Boom[3]SoCal Uncensored (SCU)Billed heightsDaniels: 6 ft 0 in (1.83 m)[4]Kazarian: 6 ft 1 in (1.8...

Book by Russell Kirk The Conservative Mind AuthorRussell KirkLanguageEnglishGenrePolitical philosophy · Intellectual historyPublisherHenry Regnery CompanyPublication date1953Publication placeThe United StatesPages448 The Conservative Mind is a book by American conservative philosopher Russell Kirk. It was first published in 1953 as Kirk's doctoral dissertation and has since gone into seven editions, the later ones with the subtitle From Burke to Eliot. It traces the development of conse...

 

Total domestic and foreign economic output claimed by residents of a country Not to be confused with Gross domestic product or Modified gross national income (GNI*). GNP redirects here. For other uses, see GNP (disambiguation). World Bank's income groups as of 2021[1] Economic sectors Three-sector model Primary sector (raw materials) Secondary sector (manufacturing) Tertiary sector (services) Additional sectors Quaternary sector (information services) Quinary sector (human services) T...

 

Member of the Parliament of England Not to be confused with Walter Hungerford, 1st Baron Hungerford of Heytesbury. 18th c. drawing of ledger stone from lost monument of Sir Walter Hungerford in the north nave of Salisbury Cathedral. Only the recesses remain to show the shapes of the looted monumental brasses, many having Hungerford sickles, his heraldic badge Post 1418[1] seal of Walter Hungerford, 1st Baron Hungerford. Latin inscription: SIGILLU(M WALTERI DE HUN)GERFORD DOM(INI) DE H...

Town on Orkney, Scotland For the fictional city from the Dragon Age series, see Dragon Age II § Setting. Human settlement in ScotlandKirkwallScots: Kirkwa[1] / Kirkwaa / Kirkwal[2]Kirkwall Harbour in August 2014KirkwallLocation within OrkneyArea4.00 km2 (1.54 sq mi)Population10,020 (2020)[3][4]• Density2,505/km2 (6,490/sq mi)DemonymKirkwallianOS grid referenceHY449109• Edinburgh210 mi (340 km)•&...

 

English footballer Neil Barrett Barrett playing for Ebbsfleet United in 2007Personal informationFull name Neil William Barrett[1]Date of birth (1981-12-24) 24 December 1981 (age 42)[2]Place of birth Tooting, EnglandHeight 5 ft 10 in (1.78 m)[3]Position(s) Central midfielderYouth career0000–2001 ChelseaSenior career*Years Team Apps (Gls)2001–2004 Portsmouth 26 (2)2004 → Dundee (loan) 12 (2)2004–2005 Dundee 30 (2)2005–2006 Livingston 9 (0)20...

 

Chumash and Tongva plank boat For places in Iran, see Tomol, Iran (disambiguation). A tomol out at sea pictured in 2015. Each year, the Chumash community crosses from Channel Islands Harbor to Limuw (Santa Cruz Island) in a 17.2-mile journey (27.7 km). A tomol or tomolo (Chumash) or te'aat or ti'at (Tongva/Kizh) are plank-built boats, historically and currently in the Santa Barbara, California and Los Angeles area. They replaced or supplemented tule reed boats. The boats were between 10�...

Voce principale: Atalanta Bergamasca Calcio. Atalanta Società Bergamasca di Ginnastica e Sports AtleticiStagione 1914-1915Sport calcio Squadra Atalanta AllenatoreCommissione Tecnica Presidente Piero Carminati Promozione2º nel girone B lombardo, 4º nel girone finale. Non è promosso in Prima Categoria. 1913-1914 1915-1916 Si invita a seguire il modello di voce Questa pagina raccoglie i dati riguardanti l'Atalanta Società Bergamasca di Ginnastica e Sports Atletici nelle competizio...

 

Short, plump, Low German sausage type Knackwurst as typically served as a snack in Hamburg, Germany, on classic German dishware Knackwurst (German pronunciation: [ˈknakˌvʊʁst] ⓘ) (in North America sometimes spelled knockwurst (listenⓘ) refers to a type of sausage of northern German origin from the mid-16th century. The many available varieties depend on the geographical region of their production. Etymology and pronunciation The German noun Knackwurst—which, in English, ...