תצוגת נקודה קוונטית (באנגלית: Quantum dot display) היא התקן תצוגה המשתמש בנקודות קוונטיות (Quantum dots), ננו-קריסטלים של מוליכים למחצה אשר יכולים לייצר אור מונוכרומטי טהור בצבעים אדום, ירוק וכחול.
כיום ישנם שני מימושים של תצוגות נקודות קוונטיות המשתמשים בעקרונות פעולה שונים, האחד הוא נקודות קוונטיות פוטולומינטיות המשמשות לשיפור של טכנולוגיות תצוגה קיימות והשני הוא נקודות קוונטיות אלקטרולומנטיות אשר משתמשות בנקודות הקוונטיות כמקור אור ולא כדי לשפר מקור אור אחר.
החל משנת 2019, כל המוצרים המסחריים, כגון טלוויזיות LCD המשתמשים בנקודות קוונטיות וממותגים כ- QLED, משתמשים בתאורת LED בעלת שכבה של נקודות קוונטיות פוטולומינטיות. תצוגות מסוג QD-LED המשתמשות בנקודות קוונטיות אלקטרולומנטיות כפיקסלים קיימות במעבדות בלבד, אם כי סמסונג פועלת לשחרור תצוגות QD-LED לשוק "בקרוב", ואף החלה לשווקן [1] בעוד שחברות אחרות [2] מטילות ספק בכך שתצוגות QD-LED כאלה יגיעו אי פעם לשוק הרחב. [3][4]
עקרון הפעולה
הרעיון להשתמש בנקודות קוונטיות כמקור אור עלה בשנות התשעים. יישומים מוקדמים כללו הדמיה אופטית באמצעות גלאים אופטיים אינפרא-אדומים בהם נעשה שימוש בנקודת קוונטיות, דיודות פולטות אור והתקנים הפולטים אור בצבע יחיד. [5] בתחילת שנות האלפיים, מדענים החלו להבין את הפוטנציאל של שימוש בנקודות קוונטיות עבור מקורות אור ותצוגות.[6]
נקודות קוונטיות יכולות להיות פוטולומינטיות (photoluminescent) או אלקטרולומינטיות (electroluminescent) דבר המאפשר להן להשתלב בקלות לתוך ארכיטקטורות תצוגה חדשות.[7] נקודות קוונטיות מייצרות באופן טבעי אור מונוכרומטי, ולכן הן יעילות יותר ממקורות אור לבנים כאשר מסננים צבעים ומאפשרות צבעים רוויים יותר שמגיעים כמעט ל 100% מסולם הצבעים Rec. 2020[8]
תצוגות נקודות קוונטיות פוטולומינטיות משתמשות בשכבת נקודות קוונטיות המשתמשת באור הכחול מהתאורה האחורית של התקן התצוגה כדי לפלוט צבעים בסיסיים טהורים המשפרים את בהירות התצוגה ואת טווח הצבעים על ידי הפחתת אובדן אור והצטלבות צבעים במסנני הצבע של תצוגות LCD. טכנולוגיה זו משמשת במסכי LCD עם תאורה אחורית של דיודות פולטות אור (LED), אך ניתן ליישם את טכנולוגיה זו גם על טכנולוגיות תצוגה אחרות המשתמשות במסנני צבע, כגון OLED או MicroLED . [9][10][11] היישום העיקרי של נקודות קוונטיות הוא במסכי LCD עם תאורה אחורית מסוג LED, כדי להתחרות במסכי OLED.
תצוגות נקודות קוונטיות אלקטרו-אמולטיביות או אלקטרולומנטיות הן סוג ניסיוני של תצוגה המבוססות על דיודות פולטות אור קוונטיות (QD-LED; או EL-QLED, ELQD, QDEL). תצוגות אלה דומות לתצוגות המשתמשות במטריצה אקטיבית של דיודות אורגניות פולטות אור (AMOLED) ולתצוגות MicroLED, בכך שאור מופק ישירות מכל פיקסל על ידי זרם חשמלי שזורם בחלקיקים. בעזרת תצוגות QD-LED ניתן לייצר תצוגות גדולות וגמישות שלא מתכלות בקלות כמו OLED (שכן החלקיקים אינם אורגניים), יתרון זה הופך את תצוגות אלו למועמדות טובות עבור מסכי טלוויזיה שטוחים, מצלמות דיגיטליות, טלפונים ניידים וקונסולות משחק כף יד .[12][13][14]
תצוגות של נקודות קוונטיות אלקטרולומנטיות יכולות להשיג יחס ניגודיות דומה ל- OLED ו- MicroLED עם צבע שחור "מושלם" עבור פיקסלים כבויים. תצוגות המשתמשות בנקודות קוונטיות מסוגלות להציג טווח צבע רחב יותר מאשר OLED עם מכשירים מסוימים שמתקרבים לכיסוי מלא של סולם הצבעים BT.2020. [15]
שכבת שיפור של נקודות קוונטיות
יישום מעשי נרחב של נקודות קוונטיות הוא בשכבת סרט של נקודות קוונטיות (QDEF) לשיפור תאורת הלד האחורית בטלוויזיות LCD . אור כחול מתאורת LED אחורית מומר על ידי הנקודות הקוונטיות לאור בצבעים טהורים יחסית של אדום וירוק, כך ששילוב זה של אור כחול, ירוק ואדום מביא לצמצום זליגה של כחול-ירוק ולספיגה מופחתת של אור במסנני הצבע של מסכי ה- LCD, יתרונות אלו מגדילים את כמות האור השמיש ומספקים תצוגות עם טווח צבעים רחב יותר.
היצרנית הראשונה שהביאה לשוק טלוויזיות מסוג זה הייתה סוני בשנת 2013 תחת השם טרילומינוס (Triluminos), הסימן המסחרי של סוני לטכנולוגיה. [16]בתערוכת האלקטרוניקה הצרכנית 2015, סמסונג, LG, TCL וסוני הציגו טלוויזיות LCD עם תאורת לד אחורית אשר משתמשות בסרט שיפור של נקודות קוונטיות. [17][18][19] ב- CES 2017 מיתגה סמסונג מחדש את טלוויזיות 'SUHD' שלה כ- 'QLED'; מאוחר יותר באפריל 2017, סמסונג הקימה את ברית ה- QLED עם Hisense ו- TCL כדי לייצר ולשווק טלוויזיות השמתמשות טכנולוגיה זאת .[20][21]
נקודה קוונטית על זכוכית (QDOG) מחליפה את הסרט עליו ממומשת שכבת השיפור של הנקודות הקוונטיות בשכבת נקודות קוונטיות דקה המצופה על גבי פלטה מנחת אור (LGP), ובכך מפחיתה את עלויות הייצור ומשפרת את היעילות של התצוגה.[22][23]
מסנני צבע של נקודות קוונטיות
צגי LCD עם תאורת לד אחורית יכולים להשתמש במסנן / ממיר צבע (QDCF / QDCC) של נקודות קוונטיות הממומש בעזרת סרט נקודות קוונטיות או בשכבת נקודות קוונטיות המודפסת בדיו אשר מכילה תבנית של תת-פיקסלים אדומים וירוקים כך שתת-פיקסלים אלו מתאימים במדויק לתת-פיקסלים האדומים והירוקים של הצג כדי להפיק אור טהור בצבע אדום וירוק; תת-הפיקסלים הכחולים יכולים להיות שקופים כך שהאור הכחול הטהור של התאורה האחורית עובר דרכם, או שניתן לממש אותם בעזרת נקודות קוונטיות בצבע כחול (בדומה לאדום וירוק) במקרה של תאורה אחורית מסוג UV-LED. תצורה זו מחליפה למעשה את מסנני בצבע הפסיביים הנפוצים בצגי LCD, אשר יעילים פחות בצורה משמעותית מכיוון שהם חוסמים כ־2/3 מהאור העובר דרכם, החלפה זו משפרת את היעולות של התצוגה, את הבהירות המרבית שהתצודה מסוגלת להפיק ואת הטוהר של הצבעים המופקים על ידי התצוגה.[24][25][26] מכיוון שנקודות קוונטיות גורמות לדפולריזציה של האור, יש להעביר את מקטב הפלט אל מאחורי מסנן הצבע ולהטמיע אותו בתא הזכוכית של צג ה- LCD; דבר שיוביל לשיפור זוויות הצפייה ובנוסף יפחית את השפעות הדפולריזציה בשכבת הגביש הנוזלי, ויגדל יחס הניגודיות. כדי לשפר את היעילות עוד יותר, ניתן לחסום את האור מהסביבה באמצעות מסנני צבע מסורתיים, ומקטבים רפלקטיביים יכולים להפנות אור ממסנני הנקודות הקוונטיות לעבר הצופה. מכיוון שרק אור כחול או אולטרה-סגול יכול לעבור דרך שכבת הגביש הנוזלית, ניתן לגרום לשכבה זאת להיות דקה יותר, וכתוצאה מכך זמני התגובה של הפיקסלים משתפרים[25][27]
חברת ננוסיס (Nanosys) ערכה תצוגה של טכנולוגיית מסנן הצבעים של נקודות קוונטיות במהלך 2017; מוצרים מסחריים היו צפויים להגיע לשוק עד 2019, אם כי התמאת המקטב בתוך התאים של הLCD נותרה אתגר גדול ומונעת את הגעתן של תצוגות המשתמשות בטכנולוגיה זאת לשוק. [28][20][29][30][31][32][33][34][35]
ניתן להשתמש במסנני צבע של נקודות קוונטיות גם עם תצוגות מסוג OLED או micro-LED, ובכך לשפר את היעילות ואת טווח הצבעים הצבעים שצגים אלו מסוגלים להפיק.[22][35][36][37]צגים כאלו נחקרים על ידי סמסונג ו- TCL; החל ממאי 2019, סמסונג מתכוונת להתחיל בייצור בשנת 2021.[38][39][40][41][42] באוקטובר 2019 הודיעה סמסונג על השקעה של 10.8 מיליארד דולר הן במחקר והן בייצור, במטרה להמיר מפעלים רבים לייצור צגי OLED המשופרים בעזרת מסננים של נקודות קוונטיות עד שנת 2025. [43][44][45][46]
דיודות פולטות אור של נקודות קוונטיות
תצוגות של נקודות קוונטיות פולטות אור ישתמשו בחלקיקים אלקטרולומנטיים המתפקדים כ נוריות לד המבוססות על נקודות קוונטיות (נוריות QD או QLED) המסודרות מטריצה פעילה או במטריצה פסיבית. במקום לדרוש תאורת LED אחורית נפרדת, תצוגות QLED אלה ישלטו על האור הנפלט מכל תת-הפיקסלים הצבעוניים (כחול אדום וירוק), [47] ובכך זמני התגובה של הפיקסלים קטנים בצורה משמעותית שכן אין צורך בשכבת הגביש הנוזלי כדי להפיק את הצבעים הרצויים. טכנולוגיה זו נקראה גם תצוגת QLED אמיתית,[48].[49][50]
מבנה ה- QD-LED דומה ברמה הבסיסית למבנה של תצוגות OLED. ההבדל העיקרי הוא שהתקנים הפולטים אור הם נקודות קוונטיות, כגון ננו-קריסטלים העשויים מקדמיום סלניד (CdSe). שכבת הנקודות הקוונטיות דחוקה בין שתי שכבות של חומרים אורגניים, האחת מובילה אלקטרונים והשנייה מובילה חורים. שדה חשמלי שמופעל על שכבות אלו גורם לאלקטרונים ולחורים לנוע לשכבת הנקודות הקוונטיות, שם הם נלכדים בנקודה הקוונטית ומבצעים רקומבינציה וכתוצאה מכך נפלטים פוטונים.[6][51] טווח הצבעים המופק על ידי תצוגות בטכנולוגיה זו עולה על הביצועים של טכנולוגיות התצוגה LCD ו- OLED.[52]
ייצור המוני של תצוגות QLED אמתיות צפוי להתחיל בשנים 2020–2021.[53][54][55][34][35]
התכונות האופטיות של נקודות קוונטיות
ביצועי נקודות קוונטיות נקבעים על פי הגודל וההרכב של מבנה הנקודות הקוונטיות. בניגוד למבנים אטומיים פשוטים, למבנה של נקודות קוונטיות יש את התכונה יוצאת הדופן שרמות האנרגיה תלויות מאוד בגודל המבנה. לדוגמה, ניתן לכוון את צבע האור הנפלט מנקודות קוונטיות העשויות מ- CdSe מאדום (קוטר של 5 ננומטר) לסגול (1.5 ננומטר). הסיבה הפיזית לכך שנקודות קוונטיות יכולות להפיק צבעים שונים היא אפקט הכליאה הקוונטית וקשורה ישירות לרמות האנרגיה שלהם. אנרגיית הפער האסור היא זאת שקובעת את האנרגיה של האור המופק (ומכאן גם את הצבע) והיא מצויה ביחס הפוך לגודל הנקודה הקוונטית בריבוע. לנקודות קוונטיות גדולות יש יותר רמות אנרגיה והן גם צפופות יותר, ומאפשרות ל-נקודות הקוונטיות לפלוט (או לספוג) פוטונים בעלי אנרגיה נמוכה יותר (צבע אדום יותר). במילים אחרות, אנרגיית הפוטון הנפלטת גדלה ככל שגודל הנקודה פוחת, מכיוון שנדרשת אנרגיה גדולה יותר כדי להגביל את עירור המוליכים למחצה לנפח קטן יותר. [56]
מבני נקודה קוונטיים חדשים משתמשים ב-אינדיום במקום ב-קדמיום, שכן האחרון אינו אסור לשימוש בתאורה על פי הנחיית ה-RoHS[24][57] וגם בגלל היותו של קדמיום חומר רעיל.
QD-LED מאופיינות בפליטת צבעים טהורים ורוויים עם רוחב פס צר, עם רוחב מלא בחצי מקסימום בטווח של 20–40 ננומטר.[6][25] ניתן לשלוט בקלות יחסית על אורך גל הניפלט על ידי שינוי גודל הנקודות הקוונטיות. יתר על כן, QD-LED מפיקים צבעים טהורים והן בעלי עמידות גבוה בנוסף על יעילות, גמישות ועלות נמוכה שדומה לטכנולוגיות מתחרות המשתמשות ברכיבים אורגניים פולטי אור. ניתן לכוון את מבנה ה- QD-LED על כל טווח האור הנראה שנמצא בין 460ננומטר (כחול) עד 650ננומטר (אדום) (העין האנושית יכולה לזהות אור בין 380 ל-750ננומטר). אורכי גל הפליטה הורחבו גם לטווחי UV ו- NIR על ידי התאמת ההרכב הכימי והמבנה של הנקודות הקוונטיות. [58][59]
תהליך הייצור
נקודות קוונטיות הן פתרון המתאים לטכניקות עיבוד רטוב. שתי טכניקות הייצור העיקריות עבור QD-LED נקראות הפרדת פאזות והדפסת מגע.[60]
הפרדת פאזות:
הפרדת פאזות מתאימה ליצירת שכבות חד-שכבתיות מסודרות של שטח גדול. השכבה היחידה QD נוצרת על ידי יציקת תמיסה מעורבת של QD ומוליכים למחצה אורגניים כגון TPD (N, N'-Bis (3-methylphenyl) -N, N'-diphenylbenzidine). תהליך זה גורם בו זמנית לשכבות חד-שכבתיות של QD בהרכבים ארוזים משושים ומציב שכבת-על זו על גבי מגע משותף. במהלך ייבוש ממס, שלב ה- QDs נפרד מחומר המצע האורגני (TPD) ועולה לכיוון פני השטח של הסרט. מבנה ה- QD המתקבל מושפע מפרמטרים רבים: ריכוז תמיסה, יחס ממס, חלוקת נפח QD ויחס גובה-רוחב. חשוב גם הם תמיסת ה- QD וטוהר הממיס האורגני.[61]
הדפסת מגע:
תהליך הדפסת המגע ליצירת סרטים דקים של QD הוא שיטת השעיה מבוססת מים ללא ממס, שהיא פשוטה וחסכונית עם תפוקה גבוהה. במהלך הפעולה מבנה המכשיר אינו חשוף לממיסים. מכיוון ששכבות העברת המטען במבני QD-LED הן סרטים דקים אורגניים הרגישים לממיסים, הימנעות ממיסים במהלך התהליך היא יתרון גדול. שיטה זו יכולה לייצר מבני RGB מוארים ברזולוציה של 1000 dpi (פיקסלים לאינץ ').[62]
בהשוואה לטכנולוגיות תצוגה אחרות
תצוגות ננו-קריסטליות יביאו לגידול של 30% בספקטרום הגלוי, תוך שימוש באנרגיה של 30 עד 50% פחות מ- LCD, במידה רבה מכיוון שננו-קריסטלים לא ידרשו תאורה אחורית. נוריות ה- QD בהירות פי 50–100 מתצוגות CRT ו- LC, ופולטות 40,000 ניטים (cd / m2). QDs מפוזרים בממיסים מימיים ולא במים, המספקים תצוגות גמישות להדפסה בכל הגדלים, כולל טלוויזיות שטח גדול. QDs יכולים להיות אורגניים, מה שמציע פוטנציאל לשפר את תוחלת החיים בהשוואה ל- OLED (אולם מכיוון שחלקים רבים של QD-LED עשויים לעיתים קרובות מחומרים אורגניים, נדרשת פיתוח נוסף כדי לשפר את חיי התפקוד.) בנוסף למסכי OLED, בחרו בתצוגות MicroLED. והמיקומים מתגלים כטכנולוגיות מתחרות לתצוגות ננו-גבישיות. סמסונג פיתחה שיטה לייצור דיודות נקודה המפלטות את עצמן באורך חיים של עד מיליון שעות.[63]
יתרונות אחרים כוללים צבעים ירוקים רוויים יותר, יכולת עבודה בפולימרים, מסך דק יותר ושימוש באותו חומר ליצירת צבעים שונים.
חסרון אחד הוא שנקודות קוונטיות כחולות דורשות בקרת תזמון מדויקת מאוד במהלך האינטראקציה, מכיוון שהנקודות הקוונטיות הכחולות הן מעט גבוהות יותר מהגודל המינימלי. מכיוון שאור השמש בעל בהירות שווה בערך של אדום, ירוק וכחול על פני כל הספקטרום, על המסך גם לייצר בהירות שווה בערך של אדום, ירוק וכחול כדי להשיג לבן טהור כמוגדר על ידי תקן CIE הזוהר D65. עם זאת, הרכיב הכחול במסך יכול להיות בעל דיוק נמוך יותר ו / או דיוק צבעים (טווח דינמי) בהשוואה לירוק ואדום, מכיוון שהעין האנושית רגישה פי שלושה עד חמש לכחול בתנאי אור יום על פי בהירות ה- CIE. פוּנקצִיָה.
^R. Victor; K. Irina (2000). Electron and photon effects in imaging devices utilizing quantum dot infrared photodetectors and light emitting diodes. Proceedings of SPIE. Photodetectors: Materials and Devices V. Vol. 3948. pp. 206–219. Bibcode:2000SPIE.3948..206R. doi:10.1117/12.382121.
^ 123P. Anikeeva; J. Halpert; M. Bawendi; V. Bulovic (2009). Quantum dot light-emitting deices with electroluminescence tunable over the entire visible spectrum. Nano Letters. Vol. 9. pp. 2532–2536. Bibcode:2009NanoL...9.2532A. doi:10.1021/nl9002969. PMID19514711.
^Society for Information Display, Digest of Technical Papers (2019-04-09). Next‐Generation Display Technology: Quantum‐Dot LEDs. doi:10.1002/sdtp.10276.
^Seth Coe; Wing-Keung Woo; Moungi Bawendi; Vladimir Bulovic (2002). Electroluminescence from single monolayers of nanocrystals in molecular organic devices. Nature. Vol. 420. pp. 800–803. Bibcode:2002Natur.420..800C. doi:10.1038/nature01217. PMID12490945.
^Kim, LeeAnn; Anikeeva, Polina O.; Coe-Sullivan, Seth; Steckel, Jonathan S.; et al. (2008). Contact Printing of Quantum Dot Light-Emitting Devices. Nano Letters. Vol. 8. pp. 4513–4517. Bibcode:2008NanoL...8.4513K. doi:10.1021/nl8025218. PMID19053797.
Giorgio II di Gran BretagnaRe Giorgio II di Thomas Hudson, 1744, National Portrait GalleryRe di Gran Bretagna e d'IrlandaStemma In carica11 giugno[1] 1727 –25 ottobre 1760(33 anni e 136 giorni) Incoronazione11 ottobre[2] 1727 PredecessoreGiorgio I SuccessoreGiorgio III Elettore di HannoverIn carica11 giugno 1727 –25 ottobre 1760 PredecessoreGiorgio I SuccessoreGiorgio III Nome completoGiorgio Augusto TrattamentoSua maestà(11.VI.1727 – 25.X.1760...
Diskografi Golden ChildVideo musik12Extended play5Singel9Album soundtrack4 Diskografi Golden Child ini terdiri dari lima album mini, dua belas musik video, dan sembilan singel. Album mini Judul Rincian Posisi puncak tangga lagu Penjualan KOR[1] Gol-Cha! Rilis: 28 Agustus 2017 Label: Woollim Entertainment, CJ E&M Format: CD, unduh digital Daftar lagu Gol-Cha! DamDaDi (담다디) With Me (나랑 해) What Happened? (내 눈을 의심해) I Love You So (네가 너무 좋아) Sea 3 KO...
Tephritidae Euaresta aequalis Klasifikasi ilmiah Kerajaan: Animalia Filum: Arthropoda Kelas: Insecta Ordo: Diptera Seksi: Schizophora Upaseksi: Acalyptratae Superfamili: Tephritoidea Famili: TephritidaeNewman, 1834 Subfamili Blepharoneurinae Dacinae Phytalmiinae Tachiniscinae Tephritinae Trypetinae Diversitas 500 genera, sekitar 5.000 spesies Tephritidae adalah salah satu famili lalat yang disebut sebagai lalat buah, famili lain adalah Drosophilidae. Tephritidae tidak termasuk organisme mode...
Nikolai JohnsenLahir24 Agustus 1988 (umur 35)SandefjordPekerjaanSelebriti Nikolai Johnsen (lahir 24 Agustus 1988) adalah orang Norwegia yang tinggal dan tampil di Korea Selatan sebagai selebriti dan mahasiswa pascasarjana dalam studi internasional di Universitas Korea. Karir Pada musim panas tahun 2015 ia tampil untuk pertama kalinya dalam acara Non-Summit sebagai perwakilan Norwegia.[1] Referensi ^ International talk show 'Non-summit' sees fresh change of pace. kpopherald.korea...
This article is about needle-like growths in animals. For backbone, see Vertebral column. For other uses, see Spine (disambiguation). In a zoological context, spines are hard, needle-like anatomical structures found in both vertebrate and invertebrate species. The spines of most spiny mammals are modified hairs, with a spongy center covered in a thick, hard layer of keratin and a sharp, sometimes barbed tip. Occurrence Mammals The defensive spines on a porcupine Spines in mammals include the ...
This article is about the Boathouse in London. For other places called The Boathouse, see The Boathouse. View of The Boathouse, Twickenham and disused mooring from Old Deer Park, Richmond Business in London, EnglandThe BoathouseGeneral informationTypeBusinessArchitectural style1960sLocationTwickenham, London, EnglandOwnerBoathouse Twickenham LimitedTechnical detailsStructural systemCavity wallFloor count2 The Boathouse is a commercial property located at Ranelagh Drive, Twickenham in England,...
Uwe Bein Informasi pribadiNama lengkap Uwe BeinTanggal lahir 26 September 1960 (umur 63)Tempat lahir Heringen, JermanPosisi bermain GelandangKarier senior*Tahun Tim Tampil (Gol)1978-1984 Kickers Offenbach 1984-1987 Köln 1987-1989 Hamburg 1989-1994 Eintracht Frankfurt 1994-1997 Urawa Reds 1997-1998 Gießen Tim nasional1989-1993 Jerman 17 (3) * Penampilan dan gol di klub senior hanya dihitung dari liga domestik Uwe Bein (lahir 26 September 1960) adalah pemain sepak bola asal Jerman. Stat...
Basque politician and geologist In this Spanish name, the first or paternal surname is Antigüedad and the second or maternal family name is Auzmendi. Iñaki AntigüedadLeader of AmaiurIncumbentAssumed office 27 September 2011Member of the Congress of DeputiesIn office20 November 2011 – 16 May 2012ConstituencyVizcaya Personal detailsBorn1955Bilbao, Basque CountryNationalityBasqueProfessionGeologist Iñaki Antigüedad Auzmendi (born 1955, Bilbao) is a Basque geologist an...
يفتقر محتوى هذه المقالة إلى الاستشهاد بمصادر. فضلاً، ساهم في تطوير هذه المقالة من خلال إضافة مصادر موثوق بها. أي معلومات غير موثقة يمكن التشكيك بها وإزالتها. (يناير 2022) مضخم الترددات اللاسلكية مضخم الترددات اللاسلكية (بالإنجليزية: RF power amplifier) هو مضخم إلكتروني يستخدم لتحوي�...
Sana'a صنعاءKegubernuranNegaraYamanIbu kotaSana'aLuas • Total15.052 km2 (5,812 sq mi)Populasi (2011)[1] • Total1.109.000 • Kepadatan0/km2 (0,00.019/sq mi) Sana'a (Arab: صنعاءcode: ar is deprecated Ṣana'ā') adalah sebuah kegubernuran di Yaman, yang beribu kota di Sana'a. Distrik Distrik Al-Haymah Ad-Dakhiliyah Distrik Al-Haymah Al-Kharijiyah Distrik Al-Husn Distrik Arhab Distrik Attyal Distrik Bani Dhabyan Distri...
Archaeological site in Turkey Map of the ancient Trajanopolis from an Admiralty Chart of 1812 Selinus or Selinous (Ancient Greek: Σελινοῦς) was a port-town on the west coast of ancient Cilicia and later of Isauria, at the mouth of a small river of the same name, now called Musa Çay.[1][2][3][4][5] It is located west of the modern city of Gazipaşa in Turkey.[6][7] History Selinus is memorable in history as the place in which Em...
English singer and songwriter (born 1994) For the Australian comedian, see Bec Hill. For the housing area in Leeds, see Beckhill. Becky HillHill performing in 2019BornRebecca Claire Hill (1994-02-14) 14 February 1994 (age 30)[1]Bewdley, Worcestershire, England[2]OccupationsSingersongwriterYears active2012–presentWorksDiscographyPartnerCharlie Gardner (engaged 2022-present)Musical careerGenresPopEDMdance-popR&BhouseUK funkyelectro[3]LabelsEkoPolydor Musi...
Seoul–Incheon redirects here. Not to be confused with Incheon International Airport. Metropolitan area in South Korea Place in South Korea ----Seoul Capital Area 수도권Seoul, the largest city in the metropolitan areaCountrySouth Korea Major citiesSeoulIncheonSuwonAnsanAnyangGoyangSeongnamBucheonYonginArea • Capital area12,685 km2 (4,898 sq mi)Population (2020) • Metro26,037,000[1] • Metro density2,053/km2 (5,320/sq ...
Museum in Manhattan, New York Rubin Museum of ArtExterior seen from 17th StreetEstablishedOctober 2, 2004Location150 West 17th StreetManhattan, New York CityCoordinates40°44′24″N 73°59′52″W / 40.7401°N 73.9978°W / 40.7401; -73.9978TypeArt museum, education center, performance and event venueCollection size2,000+ objectsPublic transit accessBus:M1, M2, M3, M7, M14A, M14D, M20, M55 PATH: JSQ-33, HOB-33 at 14th Street Subway: at 14th Stre...
Ballet de San Francisco Tipo compañía de ballet y organización sin fines de lucroForma legal organización 501(c)(3)Fundación 1933Fundador Lew ChristensenWillam ChristensenSede central San Francisco (Estados Unidos)Ingresos 47 737 570 dólares estadounidensesSitio web www.sfballet.org[editar datos en Wikidata] El Ballet de San Francisco (inglés: San Francisco Ballet o SFB) es una compañía de ballet residente en San Francisco, Estados Unidos, fundada en 1933 como par...
Conservatoire supérieur de musique du LiceuNouveau siège depuis 2009 du Conservatoire supérieur de musique du Liceu.HistoireFondation 21 février 1837StatutType École supérieure de musiqueDirecteur Maria Serrat i Martín (d) (depuis 1999)Site web (ca) www.conservatoriliceu.esLocalisationPays EspagneLocalisation El Ravalmodifier - modifier le code - modifier Wikidata Le Conservatoire supérieur de musique du Liceu (en catalan, Conservatori Superior de Música del Liceu) de Barcelone ...
Ministerio de Culturas y Turismo LocalizaciónPaís BoliviaInformación generalJurisdicción BoliviaTipo ministerio de CulturaSede La PazOrganizaciónDependencias Viceministerio de Interculturalidad Viceministerio de Turismo Viceministerio de DescolonizaciónHistoriaFundación 7 de febrero de 2009Disolución 4 de junio de 2020 (11 años)Sucesión Ministerio de Culturas y Turismo→ Ministerio de Culturas, Descolonización y Despatriarcalización Sitio web oficial[editar datos en Wik...
Christian ethical consideration This article needs additional citations for verification. Please help improve this article by adding citations to reliable sources. Unsourced material may be challenged and removed.Find sources: Principle of double effect – news · newspapers · books · scholar · JSTOR (April 2023) (Learn how and when to remove this message) Part of a series onThomas Aquinas Thomism Scholasticism Apophatic theology Divine simplicity Quinqu...