מערכת הוכחה אינטראקטיבית

בתורת הסיבוכיות, מערכת הוכחה אינטראקטיבית היא דיאלוג בין שתי קבוצות משתתפים, שבמהלכו משכנעת קבוצה אחת (ה"מוכיחים") את הקבוצה השנייה (קבוצת ה"מוודאים") בנכונותה של טענה חישובית מסוימת. בדרך כלל, ההנחה היא שהמוודאים הם בעלי כוח חישובי סביר, בעוד שהמוכיחים הם בעלי כוח חישובי רב מאוד ואולי אף בלתי מוגבל, או שיש להם ידע שהמוודאים אינם מסוגלים לחשב בעצמם.

ישנם סוגים רבים של מערכות הוכחה אינטראקטיביות, הנבדלים זה מזה במספר המוכיחים ובסוגי החישוב שמותר למוכיחים ולמוודאים לבצע, ובמגבלות נוספות על המידע שיכול לעבור מצד לצד במהלך הדיאלוג. התיאור של אופן קיום התקשורת בין שני הצדדים במערכת ההוכחה מכונה פרוטוקול.

כל מערכות ההוכחה האינטראקטיביות נדרשות לקיים שתי תכונות בסיסיות:

  • שלמוּת: אם טענה כלשהי נכונה, ואם הן המוכיח והן המוודא פועלים על פי הפרוטוקול, המוכיח יצליח לשכנע את המוודא בנכונות הטענה.
  • נאותוּת: אם טענה כלשהי אינה נכונה, אף מוכיח – גם כזה שהוא "רמאי" ואינו פועל על פי הפרוטוקול – לא יצליח לשכנע את המוודא בנכונות הטענה, אלא בהסתברות נמוכה.

מערכת הוכחה אינטראקטיבית הוגדרה לראשונה באמצע שנות ה-80 על ידי צוות מדעני מחשב, אשר כלל את לסלו בבאי, שפי גולדווסר, סילביו מיקאלי, שלמה מורן, וצ'ארלס ראקוף. צוות זה היה הראשון שקיבל את פרס גדל היוקרתי, אשר הוענק לראשונה בשנת 1993, כ-10 שנים לאחר פרסום עבודה זו.

דוגמה לא פורמלית

בריאיון שנערך עם דניאל בארנבוים, סיפר הפסנתרן כי למד בילדותו בעל-פה את כל יצירותיהם של מוצרט, בטהובן וברהמס. בתור "מבחן" לטענה זו ביקש ממנו המראיין לנגן יצירה של מוצרט אותה בחר באקראי, ובארנבוים ניגן אותה בהצלחה. המראיין ביצע עוד מספר "מבחנים" שכאלו, עד אשר השתכנע שאמת בטענתו של בארנבוים. בארנבוים עצמו צחק ואמר "האם לדעתך הצופים בבית יאמינו שלא נתת לי את השאלות מראש?".

ניתן לחשוב על מקרה זה כדוגמה לא פורמלית למערכת הוכחה אינטראקטיבית, אשר בה הטענה שאותה מנסים להוכיח היא כי בארנבוים יודע בעל פה את כל יצירותיו של מוצרט. המוכיח במערכת זו הוא בארנבוים עצמו, ואילו המוודא הוא המראיין. הפרוטוקול מבוסס על שמות יצירות שמעביר המראיין לבארנבוים, והתשובות של בארנבוים באות בדמות נגינת היצירות שהועברו.

ה"כוח החישובי הסביר" של המוודא במקרה זה בא לידי ביטוי בכך, שאין הוא מסוגל לעבד "הוכחה" ישירה לנכונות הטענה של בארנבוים – הוכחה כזו תדרוש מבארנבוים לנגן את כל היצירות של מוצרט, והדבר ידרוש זמן רב מידי עבור המוודא. על כן, הוא מסתפק ב"דגימה" של חלק מהיצירות, עד שהוא משתכנע בוודאות גדולה יחסית כי לא מרמים אותו.

הדרישה שהשאלות בריאיון לא יועברו מראש, אשר אליה מתייחס בארנבוים בדבריו, נוגעת לנאותות של ההוכחה; אם אכן היו מועברות השאלות מראש, היה די ל"מוכיח רמאי" ללמוד לנגן את היצירות שעליהן עמד לשאול המוודא בלבד, ולכן, מוכיח רמאי היה מסוגל לשכנע את המוודא בידיעותיו וביכולותיו, למרות שלא היה יודע לנגן את כל יצירותיו של מוצרט. כמו כן, ניתן לראות בה המחשה לאינטראקטיביות של ההוכחה: בניגוד להוכחות מתמטיות "סטנדרטיות", אשר הן קבועות ואינן תלויות במוודא, כאן המוודא הוא חלק בלתי נפרד מההוכחה, שכן הוא זה שמספק את השאלות, והיכולת שלו לבחור את השאלות כרצונו מבטיחה שרמאות לא תתאפשר.

סוגים של מערכות הוכחה אינטראקטיביות

מערכות הוכחה אינטראקטיביות מגדירות מחלקות סיבוכיות על פי אוספי הבעיות, שהמוכיח יכול לשכנע את המוודא כי יש לו פתרון עבורן. בניסוח פורמלי יותר, מחלקת סיבוכיות המוגדרת על ידי מערכת הוכחה אינטראקטיבית היא אוסף השפות הפורמליות, שהמוכיח יכול לשכנע את המוודא בשייכות מילים אליהן. בין מחלקות הסיבוכיות, אשר מוגדרות על ידי מערכות הוכחה אינטראקטיביות, ובין מחלקות הסיבוכיות ה"קלאסיות", אשר מוגדרות באמצעות מכונת טיורינג, התגלו קשרים רבים.

NP כמערכת הוכחה

ניתן לחשוב על מחלקת הסיבוכיות NP כעל דוגמה פשוטה למערכת הוכחה אינטראקטיבית, שבה המוודא הוא דטרמיניסטי ומבצע חישובים בזמן פולינומי. הפרוטוקול עבור שפות ב-NP יתבסס על אחת מהתכונות המאפיינות של מחלקה זו: בהינתן מילה בשפה השייכת ל-NP, קיים לה "אישור" לשייכותה לשפה, כך שניתן באמצעותו לבדוק את שייכותה לשפה בזמן פולינומי. למשל, השפה SAT היא אוסף הנוסחאות בתחשיב הפסוקים, שקיימת השמה למשתנים שלהן, כך שהן מקבלות ערך אמת "אמת". עבור נוסחה כזו, אישור לשייכותה לשפה הוא ההשמה שנותנת את ערך ה"אמת". קל לבדוק (על ידי הצבה), שההשמה אכן מחזירה את הערך הזה, אך מציאת ההשמה הזו יכולה להיות קשה מבחינה חישובית.

הפרוטוקול של מערכת ההוכחה הוא פשוט: בהינתן מילה שיש להוכיח את שייכותה לשפה, המוכיח (שאינו מוגבל מבחינה חישובית) ימצא אישור עבורה וישלח אותו אל המוודא. המוודא מסוגל לבדוק את שייכות המילה לשפה בעזרת האישור, ועל כן מתקיימת דרישת השלמות. לעומת זאת, גם אם המוכיח הוא רמאי, הוא אינו מסוגל להתל במוודא – אם מילה אינה שייכת לשפה, לא קיים עבורה אישור, ולכן לא משנה מה ישלח המוכיח למוודא, המוודא יהיה מסוגל לראות כי מה שקיבל אינו מראה שהמילה שייכת לשפה. על כן, מתקיימת דרישת הנאותות במקרה זה, ללא הכנסת שיקולים הסתברותיים לעניין.

המחלקה IP

פרוטוקול ההוכחה עבור המחלקה NP אינו אינטראקטיבי ממש – המוכיח שולח למוודא את הוכחתו, ובכך תמה האינטראקציה. מתברר כי הוספת האפשרות של אינטראקטיביות למערכת ההוכחה לא מוסיפה לה כוח – עדיין ניתן להוכיח באמצעותה רק שייכות לשפות שבמחלקה NP. הגדלת אוסף השפות שקיימת עבורן מערכת הוכחה מושגת באמצעות החלשת דרישת הנאותות, על ידי כך שמתירים למוודא לטעות בהסתברות נמוכה ולהשתכנע בנכונות טענה שקרית.

בצורה פורמלית, במערכת הוכחה זו, המוודא הוא מכונת טיורינג הסתברותית בעלת סיבוכיות זמן ריצה פולינומית. בדרך כלל, נהוג לדרוש כי ההסתברות לקבלה שגויה של מילה שאינה בשפה תהיה קטנה מ-1/3, אך ניתן לבחור כל מספר הקטן מ-1, כיוון שבאמצעות חזרה שוב ושוב על פרוטוקול ההוכחה, המוודא מסוגל להקטין את ההסתברות כרצונו.

המחלקה IP (ראשי תיבות של Interactive Proof – הוכחה אינטראקטיבית) היא אוסף השפות שניתן לקבל, כאשר מתירים בפרוטוקול ההוכחה לשני הצדדים לשלוח זה לזה הודעות מספר פעמים שהוא פולינומי ביחס לאורך הקלט. מתברר כי כוחה של מערכת ההוכחה הזו גדול יחסית: עדי שמיר הוכיח בשנת 1990 כי IP זהה למחלקה PSPACE[1] – אוסף השפות שניתן להכריע באמצעות שימוש בזיכרון פולינומי; מחלקה גדולה יחסית. תוצאה זו קושרת בין מערכת הוכחה אינטראקטיבית הסתברותית ובין מחלקת סיבוכיות דטרמיניסטית "קלאסית".

דוגמה לשפה ב-IP

בעיית איזומורפיזם הגרפים היא זו: בהינתן שני גרפים בעלי אותו מספר צמתים, הגרפים איזומורפיים אם הם זהים עד כדי שינוי שמות הצמתים. בצורה פורמלית, הם איזומורפיים, אם קיימת פונקציה חד-חד ערכית ועל, שמשמרת את יחסי הקשתות של הגרפים: היא קשת בגרף הראשון אם ורק אם היא קשת בגרף השני (כאשר היא הפונקציה).

הבעיה של בדיקת האם שני גרפים הם איזומורפיים היא ב-NP – די להציג את הפונקציה המתאימה כדי להראות את האיזומורפיזם בין הגרפים. לעומת זאת, לא ידוע אם בדיקה האם שני גרפים אינם איזומורפיים שייכת ל-NP (אף שהיא שייכת ל-Co-NP, המחלקה המכילה את כל השפות, שמשלימותיהן שייכות ל-NP), אך קיים עבורה פרוטוקול הוכחה אינטראקטיבי פשוט ב-IP:

בהינתן שני גרפים, שהמוודא רוצה להשתכנע שאינם איזומורפיים, הוא בוחר אחד מהם באקראי, מגריל תמורה על צמתיו ושולח את התוצאה למוכיח. על המוכיח (שאינו מוגבל חישובית) לגלות איזה משני הגרפים בחר המוודא. אם המוכיח הצליח לגלות זאת, המוודא מקבל את הקלט (או חוזר על הפרוטוקול עוד מספר פעמים כדי להקטין את ההסתברות לטעות שלו), ואחרת הוא דוחה אותו.

אם שני הגרפים אינם איזומורפיים, המוכיח יהיה מסוגל לגלות בוודאות איזה משני הגרפים נבחר (למשל, בדיקת כל התמורות האפשריות על הגרף שניתן לו תניב, לבסוף, את אחד משני הגרפים שאותם בודקים – ורק אחד מהם) ולהחזיר למוודא תשובה שתשכנע אותו. לכן, מתקיימת דרישת השלמות.

לעומת זאת, אם שני הגרפים איזומורפיים ואם המוודא בחר בהתפלגות אחידה בדידה את התמורה שלו על הצמתים, אין למוכיח שום דרך לדעת מה הגרף שבחר המוודא, והוא יכול רק לנחש, כשהוא צודק בהסתברות 1/2. על כן, קיימת למוודא הסתברות 1/2 לטעות ולקבל זוג גרפים איזומורפיים. עם זאת, על ידי חזרה על הפרוטוקול פעם נוספת, ההסתברות יורדת ל-1/4 (ההסתברות שבשני סיבובים רצופים יתמזל מזלו של המוכיח והוא ינחש נכון מה בחר המוודא), אחרי שלושה סיבובים היא יורדת ל-1/8 וכן הלאה (באופן כללי , כאשר הוא מספר הסבבים).

במערכת זו יש חשיבות לכך, שהניחוש האקראי שאותו מבצע המוודא אינו גלוי למוכיח – אחרת המוכיח יודע מה הגרף אותו בחר המוודא ותמיד מסוגל להשיב לו תשובה נכונה.

הוכחות באפס ידע

ערך מורחב – הוכחה באפס ידיעה

הוכחה באפס ידע היא סוג מיוחד של הוכחה אינטראקטיבית מתוך המחלקה IP, שייחודה בכך, שבתהליך ההוכחה המוודא אינו מקבל שום מידע שלא יכל לייצר בעצמו. באופן זה, המוכיח מסוגל לשכנע אותו בנכונות טענה מבלי שייאלץ לחשוף מידע על אותה הטענה. לסוג זה של הוכחות חשיבות רבה בקריפטוגרפיה, למשל מכיוון שהוא מסוגל להוות בסיס למערכות זיהוי: אם ידוע למוכיח סוד כלשהו, שמאפשר לו (ולו בלבד) לבצע חישוב בצורה יעילה, הוא יכול להוכיח למוודא את זהותו על ידי כך, שיוכיח כי הוא מסוגל לבצע את החישוב הזה. אם הפרוטוקול שישמש להוכחה יגרום לדליפת מידע על הסוד, תיפגע האמינות שלו; על כן יש צורך בפרוטוקול אפס ידע, שמצד אחד ישכנע את המוודא ביכולת החישוב של המוכיח, ומצד שני לא יגרום לדליפת מידע.

בצורה פורמלית, נהוג להגדיר פרוטוקול הוכחה אינטראקטיבית כפרוטוקול אפס ידע, שבו המוודא הוא בעל כוח חישוב פולינומי, ועם דרישות שלמות ונאותות הדומות לאלו של IP (לרוב דורשים כי המוודא יקבל החלטה שגויה לכאן או לכאן בהסתברות הקטנה מ-1/3). את דרישת אפס הידע נהוג לפרמל באמצעות סימולטור: סימולטור הוא מכונה, הזהה בכוחה למוודא, ובהינתן המידע הבסיסי של הפרוטוקול, מייצרת תעתיק של הפרוטוקול, כפי שהיה מתנהל בין המוודא למוכיח אמין (תעתיק הוא המידע על כל ההודעות שנשלחו במהלך הפרוטוקול והתוצאה הסופית שלו). מכיוון שהפרוטוקול הסתברותי, גם התעתיק שאותו מייצר הסימולטור הוא הסתברותי; כלומר, מתקבלת התפלגות כלשהי על התעתיקים האפשריים.

הרעיון שמאחורי הסימולטור הוא, שהסימולטור מייצג את החישובים שהמוודא מסוגל לבצע בעצמו. אם המידע שעובר מצד לצד במהלך הפרוטוקול ניתן לייצור בידי סימולטור, ניתן להסיק מכך, שלמוודא לא הגיע כל מידע חדש אותו לא יכל להסיק בעצמו (פרט לכך שהשתכנע בנכונות הטענה שטען המוכיח).

ישנן שלוש מחלקות סיבוכיות עיקריות שמוגדרות עבור הוכחות באפס ידע, ומסתמכות על ההבדל בין התפלגות התעתיקים שיוצר הסימולטור, והתפלגות התעתיקים שמתקבלים בריצה אמיתית של הפרוטוקול:

  • המחלקה PZK (ראשי תיבות של Perfect Zero-Knowledge) – אוסף השפות, שקיים להן פרוטוקול אפס ידע מושלם; כלומר, שהסימולטור מייצר התפלגות תעתיקים הזהה לחלוטין לזו של הפרוטוקול האמיתי.
  • המחלקה SZK (ראשי תיבות של Statistical Zero-Knowledge) – מתירה מרחק קבוע כלשהו (למשל, 1/10) בין ההתפלגויות.
  • המחלקה CZK (ראשי תיבות של Computational Zero-Knowledge) – מתירה כל הבדל בין ההתפלגויות, שלא ניתן לגילוי על ידי מכונה שכוחה ככוחו של המוודא (כלומר, מכונת BPP). תחת ההנחה, לפיה קיימות פונקציות חד-כיווניות, ניתן להראות כי CZK שווה למחלקה IP.

המחלקה MIP

ישנן שתי דרכים בסיסיות להרחיב את IP:

  1. הוספת כוח חישוב למוודא.
    דרך זו בעייתית, מכיוון שעיקר העניין במערכות הוכחה אינטראקטיביות הוא בכך שלמוודא כוח "סביר".
  2. הוספת מוכיחים נוספים, שאינם מסוגלים לתקשר ביניהם ואינם מודעים לתקשורת של המוודא עם מוכיחים אחרים מלבדם.
    התוצאה של הרחבה זו היא המחלקה MIP (ראשי תיבות של Multi-Prover Interactive Proof – הוכחה אינטראקטיבית מרובת מוכיחים).

מכיוון שהמוכיח ב-IP אינו מוגבל בכוחו החישובי, אין בהוספת מוכיחים כדי לסייע להוכחה כי מילה כלשהי שייכת לשפה (שכן, ניתן לנסח כל פרוטוקול לשני מוכיחים עבור מוכיח בודד). תוספת הכוח נובעת מכך שיותר קל לזהות מצבים בהם המוכיח חורג מהפרוטוקול ומנסה "להוכיח" שייכות של מילה, שאינה שייכת לשפה. ניתן להמשיל זאת לחקירת משטרה של שני שותפים לפשע: כאשר כל שותף נחקר בנפרד, קיימת אפשרות למצוא סתירה בין גרסאותיהם, ובכך להוכיח כי הם משקרים, דבר שאינו אפשרי במקרה של פושע בודד.

כוחה של MIP גדול למדי; הוכח כי היא שווה למחלקה NEXP – אוסף השפות, שניתן לקבל באמצעות מכונת טיורינג אי-דטרמיניסטית, הפועלת בסיבוכיות זמן אקספוננציאלית. כמו כן, מתברר שאין צורך ביותר משני מוכיחים: הרחבת IP על ידי הוספת מספר קבוע של מוכיחים שקולה להרחבתה על ידי הוספת מוכיח אחד בלבד.

פרוטוקול ארתור-מרלין

פרוטוקול ארתור-מרלין (על שם המלך ארתור והקוסם מרלין) דומה לפרוטוקול עבור IP, אך עבורו כל ההגרלות שאותן מבצע המוודא ("ארתור") הן ציבוריות – כלומר, תוצאות ההגרלה ידועות גם למוכיח ("מרלין"). מתברר, כי כאשר מרשים מספר סיבובים פולינומי ביחס לאורך הקלט, מחלקת השפות שניתן להכריע באמצעות הפרוטוקול היא IP – כלומר, כוחה של המערכת אינו קטן בשל המעבר להגרלות ציבוריות.

כאשר מספר הסיבובים הוא קבוע ואינו תלוי בגודל הקלט, מתברר כי הוספת יותר מסיבוב אחד אינה מגדילה את כוחה של המערכת. על כן, ישנן שתי מחלקות עיקריות של שפות שעולות בהקשר זה:

  • המחלקה AM – מכילה את כל השפות, שמתקבלות על ידי פרוטוקול ארתור-מרלין, שבו ראשית מבצע המוודא הגרלה ציבורית, על בסיס ההגרלה שולח למוכיח הודעה כלשהי, המוכיח מספק תשובה להודעה זו והמוודא מחליט – על בסיס התשובה שקיבל, ההגרלה שביצע והקלט שנבדק – מהי התשובה.
    המחלקה AM מכילה, למשל, את בעיית איזומורפיזם הגרפים שתוארה קודם, אך הפרוטוקול לבדיקה האם שני גרפים אינם איזומורפיים מסובך יותר מזה שהוצג קודם (שכזכור, התבסס על כך שההגרלה שמבצע המוודא היא חשאית).
  • המחלקה MA – בה נמצאות כל השפות, שמתקבלות על ידי פרוטוקול ארתור-מרלין, שבו ראשית שולח המוכיח למוודא הוכחה, ואחר כך המוודא מבצע הגרלה ומשתמש בה ובהוכחה שסיפק לו המוכיח כדי לבדוק את שייכות המילה לשפה. בבירור מחלקה זו מוכלת במחלקה AM, שכן ההבדל העקרוני בין שתיהן הוא בסדר הפעולות: במחלקה AM תוכן ההודעה ששולח המוכיח למוודא יכול להיות תלוי בהגרלה שביצע המוודא, אך אינו חייב להיות תלוי, ובמקרה זה אין חשיבות לשאלה מי שולח הודעה קודם.

PCP

מערכת הוכחה מסוג PCP (ראשי תיבות של "Probabilistically checkable proof") דומה למערכת MA, בה המוודא מקבל מהמוכיח הוכחה ובודק אותה באופן הסתברותי, אך בנוסף מושתתת מגבלה נוספת על המוודא: הוא אינו מסוגל בהכרח לגשת לכל ההוכחה, אלא רק לחלקים ממנה. המחלקה היא מחלקת כל השפות, שניתן לקבל במערכת הוכחה שכזו, בה המוודא משתמש לכל היותר ב- הטלות מטבע אקראיות, וקורא לכל היותר סיביות מההוכחה.

שתי דוגמאות טריוויאליות למחלקות PCP הן:

  • המחלקה – בה המוודא יכול לקרוא כמות פולינומית של סיביות מההוכחה, אך אינו יכול להשתמש כלל באקראיות.
    מחלקה זו שווה למחלקה NP, שבה מוודא דטרמיניסטי, הפועל בזמן ריצה פולינומי, בודק הוכחה.
  • המחלקה – בה המוודא יכול להטיל מטבע מספר פולינומי של פעמים, אך אינו קורא כלל את ההוכחה.
    מחלקה זו שווה למחלקה co-RP, מכיוון שככל מערכת הוכחה אינטראקטיבית, גם כאן נדרשת ממנה שלמות מלאה ונאותות גבוהה.

החשיבות של מערכות PCP היא בכך, שהן מראות כי כוח רב יחסית נשמר גם כאשר המוודא אינו קורא את כל ההוכחה. התוצאה המרכזית הראשונה שהושגה בתחום הראתה כי – כלומר, די בכמות לוגריתמית של הטלות מטבע וקריאת רק כמות לוגריתמית מההוכחה על מנת לקבל כל שפה השייכת ל-NP. תוצאה זו הורחבה אף יותר במשפט ה-PCP, מהמשפטים הבולטים בתורת הסיבוכיות, אשר מראה כי – כלומר, בהינתן שפה כלשהי מ-NP, די לקרוא כמות קבועה של מידע מתוך ההוכחה (כלומר, כמות שאינה תלויה בגודל המילה הנבדקת) ולהשתמש במספר לוגריתמי של הטלות מטבע, כדי להיות מסוגלים לקבוע בהסתברות גבוהה האם מילה שייכת לשפה או לא.

בשנת 2005 מצאה אירית דינור הוכחה חדשה ומפתיעה של משפט ה-PCP. דינור זכתה בפרס ארדש ב-2012, בעיקר בגין עבודה זו.

קישורים חיצוניים

הערות שוליים

  1. ^ א שמיר, IP=PSPACE (interactive proof=polynomial space), המחלקה למתמטיקה שימושית, מכון ויצמן למדע, רחובות, ישראל, 1990 (באנגלית)


Read other articles:

Artikel ini sebatang kara, artinya tidak ada artikel lain yang memiliki pranala balik ke halaman ini.Bantulah menambah pranala ke artikel ini dari artikel yang berhubungan atau coba peralatan pencari pranala.Tag ini diberikan pada Januari 2023. Bandar Udara Hughes dapat mengacu pada beberapa hal berikut: Bandar Udara Hughes (Alaska) di Hughes, Alaska, Amerika Serikat (IATA: HUS). Bandar Udara Hughes (California) di Los Angeles, California, Amerika Serikat (IATA: CVR). Halaman disambiguasi ini...

 

Masjid Keramat Banua Halat (Masjid Al Mukarromah), masjid yang menjadi saksi bisu perkembangan agama Islam di Tapin. Banua Halat adalah salah satu banua dari empat banua yang tergabung dalam wilayah Distrik Benua Empat pada masa kolonial Belanda dahulu. Banua Halat artinya kampung perbatasan yaitu perbatasan antara perkampungan suku Banjar yang sudah memeluk agama Islam dengan perkampungan suku Bukit yang masih beragama nenek moyang yaitu kepercayaan Balian, yang biasanya disamakan dengan aga...

 

منتخب الأرجنتين لدوري الرغبي بلد الرياضة الأرجنتين  الموقع الرسمي الموقع الرسمي  أكبر فوز أكبر خسارة تعديل مصدري - تعديل   منتخب الأرجنتين لدوري الرغبي (بالإسبانية: Selección de rugby league de Argentina)‏ هو ممثل الأرجنتين الرسمي في المنافسات الدولية في دوري الرغبي .[1][2] ...

Untuk ordo mamalia, lihat Carnivora. Singa adalah karnivor obligat. Makanan utama mereka adalah daging mamalia besar, seperti kerbau Afrika ini. Karnivor, pemakan daging, atau satwaboga[1] adalah makhluk hidup yang memperoleh energi dan nutrisi yang dibutuhkan dari makanan berupa jaringan hewan, baik sebagai pemangsa maupun pebangkai.[2][3] Hewan-hewan yang hanya bergantung pada daging hewan untuk nutrisinya disebut karnivor obligat dan hewan-hewan yang juga mengonsums...

 

Norwegian poet (skald) Þórbjǫrn HornklofiOccupationSkaldLanguageOld NorsePeriodViking AgeLiterary movementSkaldic poetryYears activeLate 9th to early 10th centuryNotable worksHaustlǫng, Ynglingatal Þjóðólfr ór Hvini (Old Norse pronunciation: [ˈθjoːðˌoːlvz̠ oːz̠ ˈxwine]; anglicized as Thjódólf of Hvinir or Thiodolf; fl. late 9th–early 10th c. AD),[1] was a Norwegian skald, said to have been one of the court-poets of the Norwegian king Harald Fairhair...

 

Piala AFF 2022Piala Mitsubishi Electric AFF 2022 AFF Mitsubishi Electric Cup 2022Logo resmi Kejuaraan AFF 2022Informasi turnamenJadwalpenyelenggaraan20 Desember 2022 – 16 Januari 2023Jumlahtim peserta10 (dari 1 sub-konfederasi)Tempatpenyelenggaraan10 (di 9 kota)Hasil turnamenJuara Thailand (gelar ke-7)Tempat kedua VietnamStatistik turnamenJumlahpertandingan26Jumlah gol90 (3,46 per pertandingan)Jumlahpenonton479.571 (18.445 per pertandingan)Pemain terbaik Theera...

American actor (1920–2006) This article needs additional citations for verification. Please help improve this article by adding citations to reliable sources. Unsourced material may be challenged and removed.Find sources: Arthur Franz – news · newspapers · books · scholar · JSTOR (March 2013) (Learn how and when to remove this message) Arthur FranzFrom the film trailer for The Unholy Wife (1957)Born(1920-02-29)February 29, 1920Perth Amboy, New Jersey...

 

Basilika Bunda RahmatBasilika Minor Bunda Rahmatbahasa Italia: Basilica Santuario della Beata Vergine delle GrazieBasilika Bunda RahmatLokasiCurtatoneNegara ItaliaDenominasiGereja Katolik RomaArsitekturStatusBasilika minorStatus fungsionalAktif Basilika Bunda Rahmat (bahasa Italia: Basilica Santuario della Beata Vergine delle Grazie) adalah sebuah gereja basilika minor Katolik yang terletak di Curtatone, Italia. Basilika ini ditetapkan statusnya secara Immemorial dan didedikasika...

 

Klaus HäröKlaus Härö pada 2010.Lahir31 Maret 1971 (umur 53)PekerjaanSutradara Klaus Härö (lahir 31 Maret 1971) adalah seorang sutradara Finlandia. Pada 2004, Härö memenangkan Penghargaan Negara untuk Kesenian Finlandia.[1] Ia belajar menyutradarai dan menghadiri seminar-seminar penulisan di Universitas Kesenian Industrial di Helsinki. Ia telah menyutradarai lima film fitur Elina: As If I Wasn't There (2003), Mother of Mine (2005) dan The New Man (2007),[2][3&...

Voce principale: Southern Exposure. Southern ExposureStagione 2020Sport pallavolo Squadra Southern Exposure Allenatore Cory Marks Presidente Orlando Catalan NVA ShowcaseOttavi di finale - 2021 Questa voce raccoglie le informazioni riguardanti i Southern Exposure nelle competizioni ufficiali della stagione 2020. Indice 1 Stagione 2 Organigramma societario 3 Rosa 4 Mercato 5 Risultati 6 Statistiche 6.1 Statistiche di squadra 6.2 Statistiche dei giocatori 7 Note 8 Collegamenti esterni Stag...

 

Special organs of perception in Sufi spiritual psychology Part of a series on IslamSufismTomb of Abdul Qadir Gilani, Baghdad, Iraq Ideas Abdal Al-Insān al-Kāmil Baqaa Dervish Dhawq Fakir Fana Hal Haqiqa Ihsan Irfan Ishq Karamat Kashf Lataif Manzil Ma'rifa Maqam Murid Murshid Nafs Nūr Qalandar Qutb Silsila Sufi cosmology Sufi metaphysics Sufi philosophy Sufi poetry Sufi psychology Salik Tazkiah Wali Yaqeen Practices Anasheed Dhikr Haḍra Muraqabah Qawwali Sama Whirling Ziyarat Sufi orders ...

 

Welwyn Hatfield District Council election 1976 Welwyn Hatfield District Council election ← 1973 6 May 1976 (1976-05-06) 1978 → 43 out of 43 seats to Welwyn Hatfield District Council23 seats needed for a majorityTurnout~34,425, 50.6%   First party Second party Third party   Party Conservative Labour Liberal Last election 19 seats, 37.8% 24 seats, 56.4% 0 seats, 5.4% Seats before 19 24 0 Seats after 24 19 0 Seat change 5 5 Popul...

American feminist author and journalist Susan FaludiBornSusan Charlotte Faludi (1959-04-18) April 18, 1959 (age 65)New York City, U.S.EducationHarvard UniversityOccupationJournalistKnown forBacklashAwardsPulitzer Prize for Explanatory Journalism (1991) Kirkus Prize (2016) Susan Charlotte Faludi (/fəˈluːdi/; born April 18, 1959) is an American feminist,[1][2] journalist, and author. She won a Pulitzer Prize for Explanatory Journalism in 1991, for a report on the le...

 

Tender of the United States Navy For other ships with the same name, see USS Dixie. USS Dixie (AD-14) in 1976 History United States NameUSS Dixie NamesakeA collective designation for the southern states of the United States. BuilderNew York Shipbuilding Laid down17 March 1938 Launched27 May 1939 Sponsored byMrs. A. C. Pickens Commissioned25 April 1940 Decommissioned15 June 1982 Stricken15 June 1982 MottoCan Do Honors andawards5 battle stars for Korean War service FateSold for scrap, 17 Februa...

 

Kombu Klasifikasi ilmiah Kerajaan: Protista Divisi: Heterokontophyta Kelas: Phaeophyceae Ordo: Laminariales Famili: Laminariaceae Genus: Saccharina Spesies: S. japonica Kombu (昆布code: ja is deprecated ) atau konbu adalah ganggang laut (rumput laut) umumnya dari spesies Laminaria japonica yang dikonsumsi orang di negara-negara Asia Timur seperti Tiongkok, Korea dan Jepang. Di dalam bahasa Korea dikenal dengan nama dashima atau haidai (Hanzi: 海带; Pinyin: Hǎidài). Di Jepa...

PT Bank JTrust Indonesia Tbk.JenisPublikKode emitenIDX: BCICIndustriJasa keuanganDidirikanJakarta, Indonesia (1989, sebagai Bank CIC)Kantorpusat Jakarta, IndonesiaSitus webJ Trust Bank J Trust Bank (dahulu Bank Mutiara)[1] (IDX: BCIC) adalah perusahaan Indonesia yang berbentuk perseroan terbatas dan bergerak di bidang jasa keuangan perbankan. Bank ini berbasis di Jakarta, dan sejarahnya dapat ditarik ke Bank CIC (kemudian menjadi Bank Century) yang dibentuk pada 1989. Sejarah Bank Mut...

 

Filipino beef sausage Cabanatuan longganisaAlternative namesBatutayCourseSausagePlace of originPhilippinesRegion or stateCabanatuan, Nueva EcijaMain ingredientsbeef Cabanatuan longganisa, also known as batutay, bototay, or batotay, depending on the municipality, is a Filipino beef sausage originating from Cabanatuan in the province of Nueva Ecija. It can be served sweet (hamonado), garlicky (de recado), or skinless (without the casing). It is celebrated in the annual Longganisa Festival of Ca...

 

Calculus of functions of several variables This article relies largely or entirely on a single source. Relevant discussion may be found on the talk page. Please help improve this article by introducing citations to additional sources.Find sources: Multivariable calculus – news · newspapers · books · scholar · JSTOR (October 2015) Part of a series of articles aboutCalculus ∫ a b f ′ ( t ) d t = f ( b ) − f ( a ) {\displaystyle \int ...

يفتقر محتوى هذه المقالة إلى الاستشهاد بمصادر. فضلاً، ساهم في تطوير هذه المقالة من خلال إضافة مصادر موثوق بها. أي معلومات غير موثقة يمكن التشكيك بها وإزالتها. (أكتوبر 2019) مايو الأسود جزء من معركة الأطلسي    التاريخ وسيط property غير متوفر. بداية 29 أبريل 1943  نهاية 24 مايو 19...

 

ПосёлокГазгородокчечен. Газгородок 43°31′45″ с. ш. 45°41′27″ в. д.HGЯO Страна  Россия Субъект Федерации Чечня Муниципальный район Грозненский Сельское поселение Правобережненское История и география Высота центра 130 м Тип климата умеренный Часовой пояс UTC+3:00 Нас...