ההסכם הג'נטלמני (1907)
|
Read other articles:
Ancient Egyptian personification of primordial darkness This article is about a concept in ancient Egyptian mythology. For other uses, see Kek (disambiguation). KekKauket (left) and Kek (right) sitting on thrones, relief from a temple at Deir el-MedinaName in hieroglyphs Kek Kekui Kekuit Major cult centerHermopolis (as a member of the Ogdoad)Personal informationSpouseKauket Kek is the deification of the concept of primordial darkness[1] in the ancient Egyptian Ogdoad cosmogony of Herm...
Kenwa MabuniLahir(1889-11-14)14 November 1889Shuri, OkinawaMeninggal23 Mei 1952(1952-05-23) (umur 62)Tokyo, JepangGayaShitō-ryūGuruAnkō Itosu, Higaonna KanryōPeringkatPendiri Shitō-ryūSiswa TerkemukaKenei Mabuni, Iwata Manzo, Chōjirō Tani Kenwa Mabuni (摩文仁 賢和code: ja is deprecated , Mabuni Kenwa, 14 November 1889 - 23 Mei 1952) adalah salah satu karateka pertama yang mengajarkan karate di daratan utama Jepang dan dikenal karena mengembangkan sebuah gaya yang dikenal seb...
Pour les articles homonymes, voir Mezzana. Cet article est une ébauche concernant une localité italienne et le Trentin-Haut-Adige. Vous pouvez partager vos connaissances en l’améliorant (comment ?) selon les recommandations des projets correspondants. Mezzana Administration Pays Italie Région Trentin-Haut-Adige Province Trentin Code postal 38020 Code ISTAT 022114 Code cadastral F168 Préfixe tel. 0463 Démographie Population 880 hab. (1er janvier 2023[1]) Densit�...
此條目介紹的是拉丁字母中的第2个字母。关于其他用法,请见「B (消歧义)」。 提示:此条目页的主题不是希腊字母Β、西里尔字母В、Б、Ъ、Ь或德语字母ẞ、ß。 BB b(见下)用法書寫系統拉丁字母英文字母ISO基本拉丁字母(英语:ISO basic Latin alphabet)类型全音素文字相关所属語言拉丁语读音方法 [b][p][ɓ](适应变体)Unicode编码U+0042, U+0062字母顺位2数值 2歷史發...
Indigenous tribe in the United States For other uses, see Tawakoni (disambiguation). TawakoniDave, a Tawakoni man, 1872Total populationfewer than 2,953[1] (2018)Regions with significant populations Oklahoma, historically Kansas and TexasLanguagesEnglish, formerly WichitaReligionNative American Church, Christianity,indigenous religionRelated ethnic groupsCaddo, Pawnee, other Wichita and Affiliated Tribes The Tawakoni (also Tahuacano and Tehuacana) are a Southern Plains...
Six U.S. Army enlisted men courts-martialed for refusing orders to Vietnam in June 1970 The Fort Lewis Six arrested in June 1970 for refusing orders to Vietnam. The Fort Lewis Six were six U.S. Army enlisted men at the Fort Lewis Army base in the Seattle and Tacoma, Washington area who in June 1970 refused orders to the Vietnam War and were then courts-martialed.[1] They had all applied for conscientious objector status and been turned down by the Pentagon. The Army then ordered them ...
周處除三害The Pig, The Snake and The Pigeon正式版海報基本资料导演黃精甫监制李烈黃江豐動作指導洪昰顥编剧黃精甫主演阮經天袁富華陳以文王淨李李仁謝瓊煖配乐盧律銘林孝親林思妤保卜摄影王金城剪辑黃精甫林雍益制片商一種態度電影股份有限公司片长134分鐘产地 臺灣语言國語粵語台語上映及发行上映日期 2023年10月6日 (2023-10-06)(台灣) 2023年11月2日 (2023-11-02)(香�...
Austrian paramilitary organization (1923–1936) Republican Protection LeagueRepublikanischer SchutzbundEmblem of the SchutzbundFoundersSocial Democratic Party of AustriaFoundation1923Dissolved1934HeadquartersViennaActive regionsAustriaIdeologySocial democracyDemocratic socialismRepublicanismAnti-fascismAnti-monarchismAnti-clericalismFactions:Communism[1]Political positionLeft-wingFactions:Far-leftStatusDefunctSize100,000 (peak in 1925)[2]Opponents Fatherland Front O...
Palma CampaniaKomuneComune di Palma CampaniaLokasi Palma Campania di Provinsi NapoliNegaraItaliaWilayah CampaniaProvinsiNapoli (NA)Luas[1] • Total20,67 km2 (7,98 sq mi)Ketinggian[2]85 m (279 ft)Populasi (2016)[3] • Total14.905 • Kepadatan720/km2 (1,900/sq mi)Zona waktuUTC+1 (CET) • Musim panas (DST)UTC+2 (CEST)Kode pos80036Kode area telepon081Situs webhttp://www.comune.palmacampania.na.i...
El parpadeo de los ojos de un Vanellus miles en Cairns, Queensland, Australia. La membrana nictitante se cierra de un solo lado, y es transparente. Los propios párpados no se cierran durante el parpadeo, pero lo hacen para dormir. La membrana nictitante (del latín nictare, parpadear), o tercer párpado, es una característica fisiológica propia de ciertos animales; se trata de una telilla o párpado accesorio transparente o translúcido que puede cerrarse para proteger al globo ocular y pa...
Ethnic group of Niger Delta, Nigeria This article has multiple issues. Please help improve it or discuss these issues on the talk page. (Learn how and when to remove these template messages) This article needs additional citations for verification. Please help improve this article by adding citations to reliable sources. Unsourced material may be challenged and removed.Find sources: Urhobo people – news · newspapers · books · scholar · JSTOR (April 201...
District of Portugal District in Norte, PortugalBragançaDistrict FlagCoat of armsThe location of the District of Bragança within continental PortugalCountryPortugalRegionNorteSubregionAlto Trás-os-MontesHistorical ProvinceTrás-os-Montes e Alto DouroDistrictBragançaMunicipalitiesAlfândega da Fé, Bragança, Carrazeda de Ansiães, Freixo de Espada à Cinta, Macedo de Cavaleiros, Miranda do Douro, Mirandela, Mogadouro, Moncorvo, Vila Flor, Vimioso, VinhaisGovernment • Civil Gov...
提示:此条目页的主题不是萧。 簫琴簫與洞簫木管樂器樂器別名豎吹、豎篴、通洞分類管樂器相關樂器 尺八 东汉时期的陶制箫奏者人像,出土於彭山江口汉崖墓,藏於南京博物院 箫又稱洞簫、簫管,是中國古老的吹管樂器,特徵為單管、豎吹、開管、邊稜音發聲[1]。「簫」字在唐代以前本指排簫,唐宋以來,由於單管豎吹的簫日漸流行,便稱編管簫爲排簫�...
County in Washington, United States County in WashingtonCowlitz CountyCountyCowlitz County CourthouseLocation within the U.S. state of WashingtonWashington's location within the U.S.Coordinates: 46°11′N 122°41′W / 46.19°N 122.68°W / 46.19; -122.68Country United StatesState WashingtonFoundedApril 21, 1854SeatKelsoLargest cityLongviewArea • Total1,166 sq mi (3,020 km2) • Land1,140 sq mi (3,000 km2)...
French actress (1921–1950) Corinne LuchaireLuchaire in 1943BornRosita Christiane Yvette Luchaire(1921-02-11)11 February 1921Paris, FranceDied22 January 1950(1950-01-22) (aged 28)Paris, FranceYears active1935–1940[1]SpouseGuy de Voisins-LavernièreParentJean Luchaire (father) Corinne Luchaire (11 February 1921 – 22 January 1950) was a French film actress who was a star of French cinema on the eve of World War II.[2] Her association with the German occupation led...
Italian actress (born 1931) This biography of a living person needs additional citations for verification. Please help by adding reliable sources. Contentious material about living persons that is unsourced or poorly sourced must be removed immediately from the article and its talk page, especially if potentially libelous.Find sources: Adriana Asti – news · newspapers · books · scholar · JSTOR (October 2023) (Learn how and when to remove this message) ...
Fairy tale For the 2002 novel, see The Frog Princess (novel). Not to be confused with The Frog Prince. The Frog PrincessThe Frog Tsarevna, Viktor Vasnetsov, 1918Folk taleNameThe Frog PrincessAarne–Thompson groupingATU 402 (The Animal Bride)RegionEastern EuropePublished inRussian Fairy Tales by Alexander AfanasyevRelated Puddocky The Three Feathers The Frog Princess is a fairy tale that has multiple versions with various origins. It is classified as type 402, the animal bride, in the Aarne�...
Indian Odia-language TV news channel Television channel News18 OdiaCountryIndiaBroadcast areaIndiaHeadquartersBhubaneswar, Odisha, IndiaProgrammingLanguage(s)OdiaPicture format4:3 (576i, SDTV)OwnershipOwnerTV18Sister channelsNews18 IndiaCNN-News18News18 BanglaNews18 LokmatNews18 GujaratiNews18 KannadaNews18 Tamil NaduNews 18 KeralaNews18 J&K-Ladakh-HimachalNews18 Assam North EastNews18 Uttar Pradesh UttarakhandNews18 Madhya Pradesh-ChhattisgarhNews18 Bihar-JharkhandNews18 Punjab-HaryanaNe...
Mountain pass in British Columbia, Canada Coquihalla SummitSouthern approach to Coquihalla Summit as viewed from Yak PeakElevation1,244 m (4,081 ft)Traversed by Highway 5 (Coquihalla Highway)LocationBritish Columbia, CanadaRangeNorth CascadesCoordinates49°35′50.3″N 121°04′41.3″W / 49.597306°N 121.078139°W / 49.597306; -121.078139Topo mapNTS 92H11 Spuzzum Coquihalla Summit (el. 1,244 m or 4,081 ft) is a highway summit along the Coquihalla High...
Tensor describing energy momentum density in spacetime Contravariant components of the stress–energy tensor. General relativity G μ ν + Λ g μ ν = κ T μ ν {\displaystyle G_{\mu \nu }+\Lambda g_{\mu \nu }={\kappa }T_{\mu \nu }} Introduction HistoryTimelineTests Mathematical formulation Fundamental concepts Equivalence principle Special relativity World line Pseudo-Riemannian manifold Phenomena Kepler problem Gravitational lensing Gravita...