פונקציית מדרגה

פונקציית מדרגה. פה הערך ב-0 מוגדר להיות 0.5

במתמטיקה, פונקציית מדרגה, או פונקציית הביסייד (על שם אוליבר הביסייד) היא פונקציה המקבלת את הערך 0 עבור מספרים שליליים ואת הערך אחד עבור מספרים חיוביים, כלומר זוהי הפונקציה המציינת של הקרן : (הערך ב- מוגדר לעיתים אחרת, למשל ).

תכונות הפונקציה:

  • הפונקציה רציפה בכל נקודה פרט ל-.
  • הפונקציה גזירה בכל נקודה פרט ל-.
  • הפונקציה אינטגרבילית בכל קטע סופי.
  • באופן לא פורמלי, "פונקציית הנגזרת" של היא הדלתא של דיראק (נוסח זה אינו נכון מתמטית מכיוון שפונקציית מדרגה אינה גזירה באפס). זוהי דיסטריבוציה (Distribution) המקבלת בכל נקודה את הערך , פרט לנקודה בה היא "מקבלת את הערך אינסוף". זהו תיאור איכותי בלבד ואיננו מדויק מתמטית. באופן יותר ריגורוזי, מה שנכון לרשום הוא ש- פרט אולי ל-.
  • הפונקציה הקדומה של היא , שנקראת לעיתים פונקציית רמפה.
  • התמרת לפלס של פונקציית המדרגה היא .

ראו גם

קישורים חיצוניים

ויקישיתוף מדיה וקבצים בנושא פונקציית מדרגה בוויקישיתוף