Read other articles:
Maranta Maranta arundinacea Klasifikasi ilmiah Kerajaan: Plantae Divisi: Magnoliophyta Kelas: Liliopsida Subkelas: Zingiberidae Ordo: Zingiberales Famili: Marantaceae Genus: MarantaL. Spesies Lihat teks Sinonim[1] Allouya Plum. ex Aubl. Maranta adalah genus tumbuhan berbunga dalam famili Marantaceae yang berisi 40-50 spesies tumbuhan yang diakui.[1] Genus ini berasal dari Amerika Tengah dan Selatan tropis serta Hindia Barat.[2][3] Penamaannya ditunjukan sebaga...
Untuk kegunaan lain, lihat The Traffickers (seri televisi 2016) dan Trafficker (disambiguasi). TraffickersNama lainHangul공모자들 Hanja共謀者들 Alih AksaraGongmojadeulMcCune–ReischauerKongmochadŭl SutradaraKim Hong-sunProduserChoi Yeon-ju Choi Hyeon-muk Kim Seong-geunDitulis olehKim Sang-myung Kim Hong-sunPemeranIm Chang-jung Choi DanielPenata musikKim Jun-seongSinematograferYoon Nam-jooPenyuntingShin Min-kyungDistributorTimeStory/Cinus EntertainmentTanggal rilis 30 Agu...
Type of society and economic system This article is about the hypothetical stage of socioeconomic development. For the economic systems of the former Soviet and Eastern Bloc communist states, see Soviet-type economic planning. For communistic society, see Intentional community. Part of a series onMarxism Theoretical works Economic and Philosophic Manuscripts of 1844 The Condition of the Working Class in England The German Ideology The Communist Manifesto The Eighteenth Brumaire of Louis Bonap...
Artikel ini sebatang kara, artinya tidak ada artikel lain yang memiliki pranala balik ke halaman ini.Bantulah menambah pranala ke artikel ini dari artikel yang berhubungan atau coba peralatan pencari pranala.Tag ini diberikan pada Desember 2022. Sichuan Lantian Helikopter Company Limited (Hanzi: 四川 蓝天 直升机 有限公司) adalah perusahaan aeronautika yang berbasis di Chengdu di provinsi Sichuan, Tiongkok. Ini adalah usaha patungan antara Pabrik Helikopter Mil Moskow di Rusia d...
1994 single by Mazzy Star For the episode of The Vampire Diaries, see Fade into You (The Vampire Diaries). Fade into YouSingle by Mazzy Starfrom the album So Tonight That I Might See B-side I'm Gonna Bake My Biscuit Under My Car Bells Ring (acoustic) Halah ReleasedApril 1994 (1994-04)[1]Genre Country blues Alternative rock[2] dream pop[3] Length4:55LabelCapitolComposer(s)David RobackLyricist(s)Hope SandovalProducer(s)David RobackMazzy Star singles chronology ...
2016 animated TV special Ice Age: The Great Egg-ScapadeDVD coverGenreComedyAdventureMysteryCreated byBlue Sky StudiosWritten byJim HechtDirected byRicardo CurtisStarring Ray Romano John Leguizamo Denis Leary Seann William Scott Josh Peck Keke Palmer Seth Green Taraji P. Henson Queen Latifah Music byMark MothersbaughCountry of originUnited StatesOriginal languageEnglishProductionProducersJohn C. DonkinSean McAlearEditorMatt AhrensRunning time25 minutes[citation needed]Production compan...
ГородЗвечансерб. Звечан; алб. Zveçan или Zveçani Герб 42°54′32″ с. ш. 20°50′20″ в. д.HGЯO Страна Республика Косово[1]/Сербия[1] Округ Косовско-Митровицкий округ Община Звечан Мэр Илир Пеци История и география Площадь 122 км² Высота центра 461 м Часовой пояс UTC+1:00 ...
Liaoyang 辽阳Prefecture-level city辽阳市White Pagoda (Baita) in LiaoyangLocation of Liaoyang City jurisdiction in LiaoningNegara TiongkokProvinsiLiaoningCity SeatBaita DistrictDistricts Daftar Baita DistrictWensheng DistrictHongwei DistrictGongchangling DistrictTaizihe DistrictDengta CityLiaoyang County Pemerintahan • CPC SecretarySun Yuanliang • MayorTang ZhiguoLuas • Prefecture-level city4,731 km2 (1,827 sq mi) • Luas ...
British record label XL RecordingsIndustryMusic & EntertainmentGenreVariousFounded1989; 35 years ago (1989)FounderTim Palmer andNick HalkesHeadquartersLondon, England, United KingdomNew York, United States (satellite)Key peopleRichard Russell (CEO)ParentBeggars GroupWebsitexlrecordings.com XL Recordings is a British independent record label founded in 1989 by Tim Palmer and Nick Halkes. It has been run and co-owned by Richard Russell since 1996. It forms part of the Begg...
American jazz saxophonist, composer, and band leader (1926–2020) Jimmy HeathHeath in 1998Background informationBirth nameJames Edward HeathAlso known asLittle BirdBorn(1926-10-25)October 25, 1926Philadelphia, Pennsylvania, U.S.DiedJanuary 19, 2020(2020-01-19) (aged 93)Loganville, Georgia, U.S.GenresJazzbebophard bopOccupation(s)MusiciancomposerarrangereducatorInstrument(s)SaxophonefluteYears active1940s–2020LabelsRiversideLimelightImpulseAtlanticVerveXanaduLandmarkSteepleChaseFormerl...
2016年美國總統選舉 ← 2012 2016年11月8日 2020 → 538個選舉人團席位獲勝需270票民意調查投票率55.7%[1][2] ▲ 0.8 % 获提名人 唐納·川普 希拉莉·克林頓 政党 共和黨 民主党 家鄉州 紐約州 紐約州 竞选搭档 迈克·彭斯 蒂姆·凱恩 选举人票 304[3][4][註 1] 227[5] 胜出州/省 30 + 緬-2 20 + DC 民選得票 62,984,828[6] 65,853,514[6]...
For the homonymous party founded in 1976, see People's Party (Spain, 1976). Reformist Centre redirects here. For reformism in politics more generally, see Reformism. This article has multiple issues. Please help improve it or discuss these issues on the talk page. (Learn how and when to remove these template messages) This article needs additional citations for verification. Please help improve this article by adding citations to reliable sources. Unsourced material may be challenged and remo...
This article needs additional citations for verification. Please help improve this article by adding citations to reliable sources. Unsourced material may be challenged and removed.Find sources: 1985 in the United States – news · newspapers · books · scholar · JSTOR (July 2014) (Learn how and when to remove this message) List of events ← 1984 1983 1982 1985 in the United States → 1986 1987 1988 Decades: 1960s 1970s 1980s 1990s 2000s See als...
Elm cultivar Ulmus pumila 'Pendula'U. pumila 'Pendula', Fengtai, 1908SpeciesUlmus pumilaCultivar'Pendula'OriginChina The Siberian Elm cultivar Ulmus pumila 'Pendula' is from northern China, where it is known as Lung chao yü shu (: Dragon's-claw elm).[1] It was classified by Frank Meyer in Fengtai in 1908,[2] and introduced to the United States by him from the Peking Botanical Garden[1] as Weeping Chinese Elm.[3] The USDA plant inventory record (1916) noted tha...
Rory Stewart Roderick James Nugent Stewart OBE FRSL (lahir 3 Januari 1973), dikenal dengan sebutan Rory Stewart, adalah seorang politikus Britania Raya yang menjabat sebagai anggota parlemen untuk daerah pemilihan Penrith and The Border sejak tahun 2010. Ia pernah menjabat sebagai menteri, termasuk sebagai Menteri Pembangunan Internasional pada tahun 2019.[1][2] Pada mulanya ia merupakan anggota Partai Konservatif Britania Raya, tetapi pada 3 September 2019 ia dikelua...
This article needs additional citations for verification. Please help improve this article by adding citations to reliable sources. Unsourced material may be challenged and removed.Find sources: California Department of Alcoholic Beverage Control – news · newspapers · books · scholar · JSTOR (November 2013) (Learn how and when to remove this message) Department of Alcoholic Beverage ControlSeal of the California Department of Alcoholic Beverage Control...
У этого термина существуют и другие значения, см. Счастливое. Не следует путать с Биюк-Узенбаш (река). СелоСчастливоеукр. Щасливе, крымскотат. Büyük Özenbaş Вид на село Счастливое с вершины Сотира 44°34′25″ с. ш. 34°04′20″ в. д.HGЯO Страна Россия/ Украина[1] Регион ...
Apple A4 Apple A4生産時期 2010年4月3日から2013年9月10日まで設計者 Apple生産者 サムスン電子CPU周波数 (iPhone 4, iPod Touch 4G) 800 MHz から (iPad) 1 GHzマイクロアーキテクチャ ARM Cortex-A8命令セット ARMv7-Aコア数 1コードネーム S5L8930X前世代プロセッサ Samsung SL58920次世代プロセッサ Apple A5L1キャッシュ 32 KB instruction + 32 KB dataL2キャッシュ 512 KBGPU PowerVR SGX 535テンプレートを表示 ...
أندرويد بايPie (بالإنجليزية) الشعارمعلومات عامةنوع نظام تشغيل نسخة البرنامج سمي باسم فطيرة النموذج المصدري حقوق التأليف والنشر محفوظة المطورون جوجلالاتحاد المفتوح للهواتف النقالة موقع الويب android.com… (الإنجليزية) معلومات تقنيةالعائلة لينكس نظام إدارة الحزم حزمة تطبيق أند�...
Topological invariant in mathematics This article is about Euler characteristic number. For Euler characteristic class, see Euler class. For Euler number in 3-manifold topology, see Seifert fiber space. In mathematics, and more specifically in algebraic topology and polyhedral combinatorics, the Euler characteristic (or Euler number, or Euler–Poincaré characteristic) is a topological invariant, a number that describes a topological space's shape or structure regardless of the way it is...