ז'יל פֶּרְסוֹן דה רובּרוואל (בצרפתית: Gilles Personne de Roberval; 10 באוגוסט 1602 - 27 באוקטובר 1675) היה מתמטיקאי צרפתי שחקר בעיות באנליזה. ממציא מאזני רוברוואל(אנ'). רוברוואל קרוי על-שם הקומונה רוברוואל שבאואז, שבה נולד.
חייו
ב-1627 השתתף במצור על לה רושל (אנ'). באותה שנה יצא לפריז, ושם מונה למושב לפילוסופיה של קולז' Gervais ב-1631 ולמושב למתמטיקה של הקולז' דה פראנס ב-1633. על מחזיק המושב היה להציע בעיות מתמטיות, ולוותר עליו לטובת מי שיפתור אותן טוב ממנו; רוברוואל עמד במשימה, והחזיק במושב עד יום מותו.
במחקריו המתמטיים עסק בעיקר בבעיות באנליזה. הוא פיתח שיטה לחישוב שטח של משטחים ונפח של גופים תלת-ממדיים, וקרא לה "שיטת ה-Indivisibles". השיטה (לחישוב שטח) מבוססת על חלוקה לצורות כמעט מלבניות, שאותן אפשר להסיע זו לצד זו עד קבלת הצורה המבוקשת. בונאוונטורה קאוואליירי פיתח שיטה דומה (עקרון קאוואליירי) באופן בלתי תלוי, אך הגישה כולה, שדרשה מיומנות גאומטרית וכושר המצאה לטיפול בכל מקרה ומקרה, התייתרה לחלוטין בתוך כמה עשרות שנים, כאשר המציאו לייבניץ וניוטון את החשבון הדיפרנציאלי והאינטגרלי. רוברוואל גילה דרך כללית לציור משיקים לעקום, כשהוא מפרק את העקום לסכום של כמה תנועות פשוטות. במסגרת מחקריו על השטח מצא שיטה לקבל עקום אחד מרעהו, תוך שמירה על השטח בין העקום לאסימפטוטה שלו. לשיטה הזו קרא טוריצ'לי "קווי רוברוואל". דקרט ביקר את השיטות של רוברוואל ושל פייר דה פרמה כלא מספקות, והעוינות שנוצרה בין השניים הביאה את רוברוואל לבקר את השיטות האנליטיות שהכניס באותה עת דקרט לחקר הגאומטריה.
רוברוואל תמך במודל ההליוצנטרי של קופרניקוס, והאמין שכל שני חלקיקי חומר ביקום מושכים זה את זה. רוברוואל היה אחד מן המתמטיקאים שהשפיעו יותר מכל על אייזיק בארו, שהיה לימים מורו של אייזק ניוטון, שהביא עיקרון זה למיצוי במסגרת חוק המשיכה האוניברסלי.
קישורים חיצוניים