Os números cíclicos son enteiros que non obedecen ás regras de mutación instantánea, posuíndo unha propiedade interesante: cando os números cíclicos se multiplican por números consecutivos (1, 2, 3,...), os díxitos resultantes son os mesmos que o número orixinal, pero aparecen nunha orde diferente, coma se "rotaran".[1][2]
Exemplos
Un dos exemplos máis coñecidos dun número cíclico é 142857. Cando se multiplica este número por 1, 2, 3,..., os díxitos do resultado rotan, pero todos eles están presentes.
Aínda que os matemáticos descubriron algúns números cíclicos, non se sabe con certeza cantos existen. De feito, suponse (conxectúrase) que pode haber infinitos números cíclicos.
Ademais, os investigadores descubriron unha relación curiosa entre os números cíclicos e certos números primos, descrita polo valor chamado "constante de Artin", aproximadamente .[3]