PROFILPELAJAR.COM
Privacy Policy
My Blog
New Profil
Kampus
Prov. Aceh
Prov. Bali
Prov. Bangka Belitung
Prov. Banten
Prov. Bengkulu
Prov. D.I. Yogyakarta
Prov. D.K.I. Jakarta
Prov. Gorontalo
Prov. Jambi
Prov. Jawa Barat
Prov. Jawa Tengah
Prov. Jawa Timur
Prov. Kalimantan Barat
Prov. Kalimantan Selatan
Prov. Kalimantan Tengah
Prov. Kalimantan Timur
Prov. Kalimantan Utara
Prov. Kepulauan Riau
Prov. Lampung
Prov. Maluku
Prov. Maluku Utara
Prov. Nusa Tenggara Barat
Prov. Nusa Tenggara Timur
Prov. Papua
Prov. Papua Barat
Prov. Riau
Prov. Sulawesi Barat
Prov. Sulawesi Selatan
Prov. Sulawesi Tengah
Prov. Sulawesi Tenggara
Prov. Sulawesi Utara
Prov. Sumatera Barat
Prov. Sumatera Selatan
Prov. Sumatera Utara
Partner
Ensiklopedia Dunia
Artikel Digital
Literasi Digital
Jurnal Publikasi
Kumpulan Artikel
Profil Sekolah - Kampus
Dokumen 123
Lista de integrais de funcións trigonométricas
A seguinte é unha lista de
integrais
de
funcións trigonométricas
.
Integrais que conteñen soamente
sin
∫ ∫ -->
sin
-->
c
x
d
x
=
− − -->
1
c
cos
-->
c
x
{\displaystyle \int \sin cx\;dx=-{\frac {1}{c}}\cos cx}
∫ ∫ -->
sin
n
-->
c
x
d
x
=
− − -->
sin
n
− − -->
1
-->
c
x
cos
-->
c
x
n
c
+
n
− − -->
1
n
∫ ∫ -->
sin
n
− − -->
2
-->
c
x
d
x
(para
n
>
0
)
{\displaystyle \int \sin ^{n}cx\;dx=-{\frac {\sin ^{n-1}cx\cos cx}{nc}}+{\frac {n-1}{n}}\int \sin ^{n-2}cx\;dx\qquad {\mbox{(para }}n>0{\mbox{)}}}
∫ ∫ -->
x
sin
-->
c
x
d
x
=
sin
-->
c
x
c
2
− − -->
x
cos
-->
c
x
c
{\displaystyle \int x\sin cx\;dx={\frac {\sin cx}{c^{2}}}-{\frac {x\cos cx}{c}}}
∫ ∫ -->
x
n
sin
-->
c
x
d
x
=
− − -->
x
n
c
cos
-->
c
x
+
n
c
∫ ∫ -->
x
n
− − -->
1
cos
-->
c
x
d
x
(para
n
>
0
)
{\displaystyle \int x^{n}\sin cx\;dx=-{\frac {x^{n}}{c}}\cos cx+{\frac {n}{c}}\int x^{n-1}\cos cx\;dx\qquad {\mbox{(para }}n>0{\mbox{)}}}
∫ ∫ -->
sin
-->
c
x
x
d
x
=
∑ ∑ -->
i
=
0
∞ ∞ -->
(
− − -->
1
)
i
(
c
x
)
2
i
+
1
(
2
i
+
1
)
⋅ ⋅ -->
(
2
i
+
1
)
!
{\displaystyle \int {\frac {\sin cx}{x}}dx=\sum _{i=0}^{\infty }(-1)^{i}{\frac {(cx)^{2i+1}}{(2i+1)\cdot (2i+1)!}}}
∫ ∫ -->
sin
-->
c
x
x
n
d
x
=
− − -->
sin
-->
c
x
(
n
− − -->
1
)
x
n
− − -->
1
+
c
n
− − -->
1
∫ ∫ -->
cos
-->
c
x
x
n
− − -->
1
d
x
{\displaystyle \int {\frac {\sin cx}{x^{n}}}dx=-{\frac {\sin cx}{(n-1)x^{n-1}}}+{\frac {c}{n-1}}\int {\frac {\cos cx}{x^{n-1}}}dx}
∫ ∫ -->
d
x
sin
-->
c
x
=
1
c
|
tan
-->
c
x
2
|
{\displaystyle \int {\frac {dx}{\sin cx}}={\frac {1}{c}}\left|\tan {\frac {cx}{2}}\right|}
∫ ∫ -->
d
x
sin
n
-->
c
x
=
cos
-->
c
x
c
(
n
− − -->
1
)
sin
n
− − -->
1
-->
c
x
+
n
− − -->
2
n
− − -->
1
∫ ∫ -->
d
x
sin
n
− − -->
2
-->
c
x
(para
n
>
1
)
{\displaystyle \int {\frac {dx}{\sin ^{n}cx}}={\frac {\cos cx}{c(n-1)\sin ^{n-1}cx}}+{\frac {n-2}{n-1}}\int {\frac {dx}{\sin ^{n-2}cx}}\qquad {\mbox{(para }}n>1{\mbox{)}}}
∫ ∫ -->
d
x
1
± ± -->
sin
-->
c
x
=
1
c
tan
-->
(
c
x
2
∓ ∓ -->
π π -->
4
)
{\displaystyle \int {\frac {dx}{1\pm \sin cx}}={\frac {1}{c}}\tan \left({\frac {cx}{2}}\mp {\frac {\pi }{4}}\right)}
∫ ∫ -->
x
d
x
1
+
sin
-->
c
x
=
x
c
tan
-->
(
c
x
2
− − -->
π π -->
4
)
+
2
c
2
ln
-->
|
cos
-->
(
c
x
2
− − -->
π π -->
4
)
|
{\displaystyle \int {\frac {x\;dx}{1+\sin cx}}={\frac {x}{c}}\tan \left({\frac {cx}{2}}-{\frac {\pi }{4}}\right)+{\frac {2}{c^{2}}}\ln \left|\cos \left({\frac {cx}{2}}-{\frac {\pi }{4}}\right)\right|}
∫ ∫ -->
x
d
x
1
− − -->
sin
-->
c
x
=
x
c
cot
-->
(
π π -->
4
− − -->
c
x
2
)
+
2
c
2
ln
-->
|
sin
-->
(
π π -->
4
− − -->
c
x
2
)
|
{\displaystyle \int {\frac {x\;dx}{1-\sin cx}}={\frac {x}{c}}\cot \left({\frac {\pi }{4}}-{\frac {cx}{2}}\right)+{\frac {2}{c^{2}}}\ln \left|\sin \left({\frac {\pi }{4}}-{\frac {cx}{2}}\right)\right|}
∫ ∫ -->
sin
-->
c
x
d
x
1
± ± -->
sin
-->
c
x
=
± ± -->
x
+
1
c
tan
-->
(
p
i
4
∓ ∓ -->
c
x
2
)
{\displaystyle \int {\frac {\sin cx\;dx}{1\pm \sin cx}}=\pm x+{\frac {1}{c}}\tan \left({\frac {pi}{4}}\mp {\frac {cx}{2}}\right)}
∫ ∫ -->
sin
-->
c
1
x
sin
-->
c
2
x
d
x
=
sin
-->
(
c
1
− − -->
c
2
)
x
2
(
c
1
− − -->
c
2
)
− − -->
sin
-->
(
c
1
+
c
2
)
x
2
(
c
1
+
c
2
)
(para
|
c
1
|
≠ ≠ -->
|
c
2
|
)
{\displaystyle \int \sin c_{1}x\sin c_{2}x\;dx={\frac {\sin(c_{1}-c_{2})x}{2(c_{1}-c_{2})}}-{\frac {\sin(c_{1}+c_{2})x}{2(c_{1}+c_{2})}}\qquad {\mbox{(para }}|c_{1}|\neq |c_{2}|{\mbox{)}}}
Integrais que conteñen soamente
cos
∫ ∫ -->
cos
-->
c
x
d
x
=
1
c
sin
-->
c
x
{\displaystyle \int \cos cx\;dx={\frac {1}{c}}\sin cx}
∫ ∫ -->
cos
n
-->
c
x
d
x
=
− − -->
cos
n
− − -->
1
-->
c
x
sin
-->
c
x
n
c
+
n
− − -->
1
n
∫ ∫ -->
cos
n
− − -->
2
-->
c
x
d
x
(para
n
>
0
)
{\displaystyle \int \cos ^{n}cx\;dx=-{\frac {\cos ^{n-1}cx\sin cx}{nc}}+{\frac {n-1}{n}}\int \cos ^{n-2}cx\;dx\qquad {\mbox{(para }}n>0{\mbox{)}}}
∫ ∫ -->
x
cos
-->
c
x
d
x
=
cos
-->
c
x
c
2
+
x
sin
-->
c
x
c
{\displaystyle \int x\cos cx\;dx={\frac {\cos cx}{c^{2}}}+{\frac {x\sin cx}{c}}}
∫ ∫ -->
x
n
cos
-->
c
x
d
x
=
x
n
sin
-->
c
x
c
− − -->
n
c
∫ ∫ -->
x
n
− − -->
1
sin
-->
c
x
d
x
{\displaystyle \int x^{n}\cos cx\;dx={\frac {x^{n}\sin cx}{c}}-{\frac {n}{c}}\int x^{n-1}\sin cx\;dx}
∫ ∫ -->
cos
-->
c
x
x
d
x
=
ln
-->
|
c
x
|
+
∑ ∑ -->
i
=
1
∞ ∞ -->
(
− − -->
1
)
i
(
c
x
)
2
i
2
i
⋅ ⋅ -->
(
2
i
)
!
{\displaystyle \int {\frac {\cos cx}{x}}dx=\ln |cx|+\sum _{i=1}^{\infty }(-1)^{i}{\frac {(cx)^{2i}}{2i\cdot (2i)!}}}
∫ ∫ -->
cos
-->
c
x
x
n
d
x
=
− − -->
cos
-->
c
x
(
n
− − -->
1
)
x
n
− − -->
1
− − -->
c
n
− − -->
1
∫ ∫ -->
sin
-->
c
x
x
n
− − -->
1
d
x
(para
n
≠ ≠ -->
1
)
{\displaystyle \int {\frac {\cos cx}{x^{n}}}dx=-{\frac {\cos cx}{(n-1)x^{n-1}}}-{\frac {c}{n-1}}\int {\frac {\sin cx}{x^{n-1}}}dx\qquad {\mbox{(para }}n\neq 1{\mbox{)}}}
∫ ∫ -->
d
x
cos
-->
c
x
=
1
c
ln
-->
|
tan
-->
(
c
x
2
+
π π -->
4
)
|
{\displaystyle \int {\frac {dx}{\cos cx}}={\frac {1}{c}}\ln \left|\tan \left({\frac {cx}{2}}+{\frac {\pi }{4}}\right)\right|}
∫ ∫ -->
d
x
cos
n
-->
c
x
=
sin
-->
c
x
c
(
n
− − -->
1
)
c
o
s
n
− − -->
1
c
x
+
n
− − -->
2
n
− − -->
1
∫ ∫ -->
d
x
cos
n
− − -->
2
-->
c
x
(para
n
>
1
)
{\displaystyle \int {\frac {dx}{\cos ^{n}cx}}={\frac {\sin cx}{c(n-1)cos^{n-1}cx}}+{\frac {n-2}{n-1}}\int {\frac {dx}{\cos ^{n-2}cx}}\qquad {\mbox{(para }}n>1{\mbox{)}}}
∫ ∫ -->
d
x
1
+
cos
-->
c
x
=
1
c
tan
-->
c
x
2
{\displaystyle \int {\frac {dx}{1+\cos cx}}={\frac {1}{c}}\tan {\frac {cx}{2}}}
∫ ∫ -->
d
x
1
− − -->
cos
-->
c
x
=
− − -->
1
c
cot
-->
c
x
2
{\displaystyle \int {\frac {dx}{1-\cos cx}}=-{\frac {1}{c}}\cot {\frac {cx}{2}}}
∫ ∫ -->
x
d
x
1
+
cos
-->
c
x
=
x
c
tan
-->
c
x
2
+
2
c
2
ln
-->
|
cos
-->
c
x
2
|
{\displaystyle \int {\frac {x\;dx}{1+\cos cx}}={\frac {x}{c}}\tan {cx}{2}+{\frac {2}{c^{2}}}\ln \left|\cos {\frac {cx}{2}}\right|}
∫ ∫ -->
x
d
x
1
− − -->
cos
-->
c
x
=
− − -->
x
x
cot
-->
c
x
2
+
2
c
2
ln
-->
|
sin
-->
c
x
2
|
{\displaystyle \int {\frac {x\;dx}{1-\cos cx}}=-{\frac {x}{x}}\cot {cx}{2}+{\frac {2}{c^{2}}}\ln \left|\sin {\frac {cx}{2}}\right|}
∫ ∫ -->
cos
-->
c
x
d
x
1
+
cos
-->
c
x
=
x
− − -->
1
c
tan
-->
c
x
2
{\displaystyle \int {\frac {\cos cx\;dx}{1+\cos cx}}=x-{\frac {1}{c}}\tan {\frac {cx}{2}}}
∫ ∫ -->
cos
-->
c
x
d
x
1
− − -->
cos
-->
c
x
=
− − -->
x
− − -->
1
c
cot
-->
c
x
2
{\displaystyle \int {\frac {\cos cx\;dx}{1-\cos cx}}=-x-{\frac {1}{c}}\cot {\frac {cx}{2}}}
∫ ∫ -->
cos
-->
c
1
x
cos
-->
c
2
x
d
x
=
sin
-->
(
c
1
− − -->
c
2
)
x
2
(
c
1
− − -->
c
2
)
+
sin
-->
(
c
1
+
c
2
)
x
2
(
c
1
+
c
2
)
(para
|
c
1
|
≠ ≠ -->
|
c
2
|
)
{\displaystyle \int \cos c_{1}x\cos c_{2}x\;dx={\frac {\sin(c_{1}-c_{2})x}{2(c_{1}-c_{2})}}+{\frac {\sin(c_{1}+c_{2})x}{2(c_{1}+c_{2})}}\qquad {\mbox{(para }}|c_{1}|\neq |c_{2}|{\mbox{)}}}
Integrais que conteñen soamente
tan
∫ ∫ -->
tan
-->
c
x
d
x
=
− − -->
1
c
ln
-->
|
cos
-->
c
x
|
{\displaystyle \int \tan cx\;dx=-{\frac {1}{c}}\ln |\cos cx|}
∫ ∫ -->
tan
n
-->
c
x
d
x
=
1
c
(
n
− − -->
1
)
tan
n
− − -->
1
-->
c
x
− − -->
∫ ∫ -->
tan
n
− − -->
2
-->
c
x
d
x
(para )
n
≠ ≠ -->
1
)
{\displaystyle \int \tan ^{n}cx\;dx={\frac {1}{c(n-1)}}\tan ^{n-1}cx-\int \tan ^{n-2}cx\;dx\qquad {\mbox{(para )}}n\neq 1{\mbox{)}}}
∫ ∫ -->
d
x
tan
-->
c
x
+
1
=
x
2
+
1
2
c
ln
-->
|
sin
-->
c
x
+
cos
-->
c
x
|
{\displaystyle \int {\frac {dx}{\tan cx+1}}={\frac {x}{2}}+{\frac {1}{2c}}\ln |\sin cx+\cos cx|}
∫ ∫ -->
d
x
tan
-->
c
x
− − -->
1
=
− − -->
x
2
+
1
2
c
ln
-->
|
sin
-->
c
x
− − -->
cos
-->
c
x
|
{\displaystyle \int {\frac {dx}{\tan cx-1}}=-{\frac {x}{2}}+{\frac {1}{2c}}\ln |\sin cx-\cos cx|}
∫ ∫ -->
tan
-->
c
x
d
x
tan
-->
c
x
+
1
=
x
2
− − -->
1
2
c
ln
-->
|
sin
-->
c
x
+
cos
-->
c
x
|
{\displaystyle \int {\frac {\tan cx\;dx}{\tan cx+1}}={\frac {x}{2}}-{\frac {1}{2c}}\ln |\sin cx+\cos cx|}
∫ ∫ -->
tan
-->
c
x
d
x
tan
-->
c
x
− − -->
1
=
x
2
+
1
2
c
ln
-->
|
sin
-->
c
x
− − -->
cos
-->
c
x
|
{\displaystyle \int {\frac {\tan cx\;dx}{\tan cx-1}}={\frac {x}{2}}+{\frac {1}{2c}}\ln |\sin cx-\cos cx|}
Integrais que conteñen soamente
cot
∫ ∫ -->
cot
-->
c
x
d
x
=
1
c
ln
-->
|
sin
-->
c
x
|
{\displaystyle \int \cot cx\;dx={\frac {1}{c}}\ln |\sin cx|}
∫ ∫ -->
cot
n
-->
c
x
d
x
=
− − -->
1
c
(
n
− − -->
1
)
cot
n
− − -->
1
-->
c
x
− − -->
∫ ∫ -->
cot
n
− − -->
2
-->
c
x
d
x
(para )
n
≠ ≠ -->
1
)
{\displaystyle \int \cot ^{n}cx\;dx=-{\frac {1}{c(n-1)}}\cot ^{n-1}cx-\int \cot ^{n-2}cx\;dx\qquad {\mbox{(para )}}n\neq 1{\mbox{)}}}
∫ ∫ -->
d
x
1
+
cot
-->
c
x
=
∫ ∫ -->
tan
-->
c
x
d
x
tan
-->
c
x
+
1
{\displaystyle \int {\frac {dx}{1+\cot cx}}=\int {\frac {\tan cx\;dx}{\tan cx+1}}}
∫ ∫ -->
d
x
1
− − -->
cot
-->
c
x
=
∫ ∫ -->
tan
-->
c
x
d
x
tan
-->
c
x
− − -->
1
{\displaystyle \int {\frac {dx}{1-\cot cx}}=\int {\frac {\tan cx\;dx}{\tan cx-1}}}
Integrais que conteñen
sin
e
cos
∫ ∫ -->
d
x
cos
-->
c
x
± ± -->
sin
-->
c
x
=
1
c
2
ln
-->
|
tan
-->
(
c
x
2
± ± -->
π π -->
8
)
|
{\displaystyle \int {\frac {dx}{\cos cx\pm \sin cx}}={\frac {1}{c{\sqrt {2}}}}\ln \left|\tan \left({\frac {cx}{2}}\pm {\frac {\pi }{8}}\right)\right|}
∫ ∫ -->
d
x
(
cos
-->
c
x
± ± -->
sin
-->
c
x
)
2
=
1
2
c
tan
-->
(
c
x
∓ ∓ -->
π π -->
4
)
{\displaystyle \int {\frac {dx}{(\cos cx\pm \sin cx)^{2}}}={\frac {1}{2c}}\tan \left(cx\mp {\frac {\pi }{4}}\right)}
∫ ∫ -->
cos
-->
c
x
d
x
cos
-->
c
x
+
sin
-->
c
x
=
x
2
+
1
2
c
ln
-->
|
sin
-->
c
x
+
cos
-->
c
x
|
{\displaystyle \int {\frac {\cos cx\;dx}{\cos cx+\sin cx}}={\frac {x}{2}}+{\frac {1}{2c}}\ln \left|\sin cx+\cos cx\right|}
∫ ∫ -->
cos
-->
c
x
d
x
cos
-->
c
x
− − -->
sin
-->
c
x
=
x
2
− − -->
1
2
c
ln
-->
|
sin
-->
c
x
− − -->
cos
-->
c
x
|
{\displaystyle \int {\frac {\cos cx\;dx}{\cos cx-\sin cx}}={\frac {x}{2}}-{\frac {1}{2c}}\ln \left|\sin cx-\cos cx\right|}
∫ ∫ -->
sin
-->
c
x
d
x
cos
-->
c
x
+
sin
-->
c
x
=
x
2
− − -->
1
2
c
ln
-->
|
sin
-->
c
x
+
cos
-->
c
x
|
{\displaystyle \int {\frac {\sin cx\;dx}{\cos cx+\sin cx}}={\frac {x}{2}}-{\frac {1}{2c}}\ln \left|\sin cx+\cos cx\right|}
∫ ∫ -->
sin
-->
c
x
d
x
cos
-->
c
x
− − -->
sin
-->
c
x
=
− − -->
x
2
− − -->
1
2
c
ln
-->
|
sin
-->
c
x
− − -->
cos
-->
c
x
|
{\displaystyle \int {\frac {\sin cx\;dx}{\cos cx-\sin cx}}=-{\frac {x}{2}}-{\frac {1}{2c}}\ln \left|\sin cx-\cos cx\right|}
∫ ∫ -->
cos
-->
c
x
d
x
sin
-->
c
x
(
1
+
cos
-->
c
x
)
=
− − -->
1
4
c
tan
2
-->
c
x
2
+
1
2
c
ln
-->
|
tan
-->
c
x
2
|
{\displaystyle \int {\frac {\cos cx\;dx}{\sin cx(1+\cos cx)}}=-{\frac {1}{4c}}\tan ^{2}{\frac {cx}{2}}+{\frac {1}{2c}}\ln \left|\tan {\frac {cx}{2}}\right|}
∫ ∫ -->
cos
-->
c
x
d
x
sin
-->
c
x
(
1
+
− − -->
cos
-->
c
x
)
=
− − -->
1
4
c
cot
2
-->
c
x
2
− − -->
1
2
c
ln
-->
|
tan
-->
c
x
2
|
{\displaystyle \int {\frac {\cos cx\;dx}{\sin cx(1+-\cos cx)}}=-{\frac {1}{4c}}\cot ^{2}{\frac {cx}{2}}-{\frac {1}{2c}}\ln \left|\tan {\frac {cx}{2}}\right|}
∫ ∫ -->
sin
-->
c
x
d
x
cos
-->
c
x
(
1
+
sin
-->
c
x
)
=
1
4
c
cot
2
-->
(
c
x
2
+
π π -->
4
)
+
1
2
c
ln
-->
|
tan
-->
(
c
x
2
+
π π -->
4
)
|
{\displaystyle \int {\frac {\sin cx\;dx}{\cos cx(1+\sin cx)}}={\frac {1}{4c}}\cot ^{2}\left({\frac {cx}{2}}+{\frac {\pi }{4}}\right)+{\frac {1}{2c}}\ln \left|\tan \left({\frac {cx}{2}}+{\frac {\pi }{4}}\right)\right|}
∫ ∫ -->
sin
-->
c
x
d
x
cos
-->
c
x
(
1
− − -->
sin
-->
c
x
)
=
1
4
c
tan
2
-->
(
c
x
2
+
π π -->
4
)
− − -->
1
2
c
ln
-->
|
tan
-->
(
c
x
2
+
π π -->
4
)
|
{\displaystyle \int {\frac {\sin cx\;dx}{\cos cx(1-\sin cx)}}={\frac {1}{4c}}\tan ^{2}\left({\frac {cx}{2}}+{\frac {\pi }{4}}\right)-{\frac {1}{2c}}\ln \left|\tan \left({\frac {cx}{2}}+{\frac {\pi }{4}}\right)\right|}
∫ ∫ -->
sin
-->
c
x
cos
-->
c
x
d
x
=
1
2
c
sin
2
-->
c
x
{\displaystyle \int \sin cx\cos cx\;dx={\frac {1}{2c}}\sin ^{2}cx}
∫ ∫ -->
sin
-->
c
1
x
cos
-->
c
2
x
d
x
=
− − -->
cos
-->
(
c
1
+
c
2
)
x
2
(
c
1
+
c
2
)
− − -->
cos
-->
(
c
1
− − -->
c
2
)
x
2
(
c
1
− − -->
c
2
)
(para
|
c
1
|
≠ ≠ -->
|
c
2
|
)
{\displaystyle \int \sin c_{1}x\cos c_{2}x\;dx=-{\frac {\cos(c_{1}+c_{2})x}{2(c_{1}+c_{2})}}-{\frac {\cos(c_{1}-c_{2})x}{2(c_{1}-c_{2})}}\qquad {\mbox{(para }}|c_{1}|\neq |c_{2}|{\mbox{)}}}
∫ ∫ -->
sin
n
-->
c
x
cos
-->
c
x
d
x
=
1
c
(
n
+
1
)
sin
n
+
1
-->
c
x
(para
n
≠ ≠ -->
1
)
{\displaystyle \int \sin ^{n}cx\cos cx\;dx={\frac {1}{c(n+1)}}\sin ^{n+1}cx\qquad {\mbox{(para }}n\neq 1{\mbox{)}}}
∫ ∫ -->
sin
-->
c
x
cos
n
-->
c
x
d
x
=
− − -->
1
c
(
n
+
1
)
cos
n
+
1
-->
c
x
(para
n
≠ ≠ -->
1
)
{\displaystyle \int \sin cx\cos ^{n}cx\;dx=-{\frac {1}{c(n+1)}}\cos ^{n+1}cx\qquad {\mbox{(para }}n\neq 1{\mbox{)}}}
∫ ∫ -->
sin
n
-->
c
x
cos
m
-->
c
x
d
x
=
− − -->
sin
n
− − -->
1
-->
c
x
cos
m
+
1
-->
c
x
c
(
n
+
m
)
+
n
− − -->
1
n
+
m
∫ ∫ -->
sin
n
− − -->
2
-->
c
x
cos
m
-->
c
x
d
x
(para
m
,
n
>
0
)
{\displaystyle \int \sin ^{n}cx\cos ^{m}cx\;dx=-{\frac {\sin ^{n-1}cx\cos ^{m+1}cx}{c(n+m)}}+{\frac {n-1}{n+m}}\int \sin ^{n-2}cx\cos ^{m}cx\;dx\qquad {\mbox{(para }}m,n>0{\mbox{)}}}
tamén:
∫ ∫ -->
sin
n
-->
c
x
cos
m
-->
c
x
d
x
=
sin
n
+
1
-->
c
x
cos
m
− − -->
1
-->
c
x
c
(
n
+
m
)
+
m
− − -->
1
n
+
m
∫ ∫ -->
sin
n
-->
c
x
cos
m
− − -->
2
-->
c
x
d
x
(para
m
,
n
>
0
)
{\displaystyle \int \sin ^{n}cx\cos ^{m}cx\;dx={\frac {\sin ^{n+1}cx\cos ^{m-1}cx}{c(n+m)}}+{\frac {m-1}{n+m}}\int \sin ^{n}cx\cos ^{m-2}cx\;dx\qquad {\mbox{(para }}m,n>0{\mbox{)}}}
∫ ∫ -->
d
x
sin
-->
c
x
cos
-->
c
x
=
1
c
ln
-->
|
tan
-->
c
x
|
{\displaystyle \int {\frac {dx}{\sin cx\cos cx}}={\frac {1}{c}}\ln \left|\tan cx\right|}
∫ ∫ -->
d
x
sin
-->
c
x
cos
n
-->
c
x
=
1
c
(
n
− − -->
1
)
cos
n
− − -->
1
-->
c
x
+
∫ ∫ -->
d
x
sin
-->
c
x
cos
n
− − -->
2
-->
c
x
(para
n
≠ ≠ -->
1
)
{\displaystyle \int {\frac {dx}{\sin cx\cos ^{n}cx}}={\frac {1}{c(n-1)\cos ^{n-1}cx}}+\int {\frac {dx}{\sin cx\cos ^{n-2}cx}}\qquad {\mbox{(para }}n\neq 1{\mbox{)}}}
∫ ∫ -->
d
x
sin
n
-->
c
x
cos
-->
c
x
=
− − -->
1
c
(
n
− − -->
1
)
sin
n
− − -->
1
-->
c
x
+
∫ ∫ -->
d
x
sin
n
− − -->
2
-->
c
x
cos
-->
c
x
(para
n
≠ ≠ -->
1
)
{\displaystyle \int {\frac {dx}{\sin ^{n}cx\cos cx}}=-{\frac {1}{c(n-1)\sin ^{n-1}cx}}+\int {\frac {dx}{\sin ^{n-2}cx\cos cx}}\qquad {\mbox{(para }}n\neq 1{\mbox{)}}}
∫ ∫ -->
sin
-->
c
x
d
x
cos
n
-->
c
x
=
1
c
(
n
− − -->
1
)
cos
n
− − -->
1
-->
c
x
(para
n
≠ ≠ -->
1
)
{\displaystyle \int {\frac {\sin cx\;dx}{\cos ^{n}cx}}={\frac {1}{c(n-1)\cos ^{n-1}cx}}\qquad {\mbox{(para }}n\neq 1{\mbox{)}}}
∫ ∫ -->
sin
2
-->
c
x
d
x
cos
-->
c
x
=
− − -->
1
c
sin
-->
c
x
+
1
c
ln
-->
|
tan
-->
(
π π -->
4
+
c
x
2
)
|
{\displaystyle \int {\frac {\sin ^{2}cx\;dx}{\cos cx}}=-{\frac {1}{c}}\sin cx+{\frac {1}{c}}\ln \left|\tan \left({\frac {\pi }{4}}+{\frac {cx}{2}}\right)\right|}
∫ ∫ -->
sin
2
-->
c
x
d
x
cos
n
-->
c
x
=
sin
-->
c
x
c
(
n
− − -->
1
)
cos
n
− − -->
1
-->
c
x
− − -->
1
n
− − -->
1
∫ ∫ -->
d
x
cos
n
− − -->
2
-->
c
x
(para
n
≠ ≠ -->
1
)
{\displaystyle \int {\frac {\sin ^{2}cx\;dx}{\cos ^{n}cx}}={\frac {\sin cx}{c(n-1)\cos ^{n-1}cx}}-{\frac {1}{n-1}}\int {\frac {dx}{\cos ^{n-2}cx}}\qquad {\mbox{(para }}n\neq 1{\mbox{)}}}
∫ ∫ -->
sin
n
-->
c
x
d
x
cos
-->
c
x
=
− − -->
sin
n
− − -->
1
-->
c
x
c
(
n
− − -->
1
)
+
∫ ∫ -->
sin
n
− − -->
2
-->
c
x
d
x
cos
-->
c
x
(for
n
≠ ≠ -->
1
)
{\displaystyle \int {\frac {\sin ^{n}cx\;dx}{\cos cx}}=-{\frac {\sin ^{n-1}cx}{c(n-1)}}+\int {\frac {\sin ^{n-2}cx\;dx}{\cos cx}}\qquad {\mbox{(for }}n\neq 1{\mbox{)}}}
∫ ∫ -->
s
i
n
n
c
x
d
x
cos
m
-->
c
x
=
sin
n
+
1
-->
c
x
c
(
m
− − -->
1
)
cos
m
− − -->
1
-->
c
x
− − -->
n
− − -->
m
+
2
m
− − -->
1
∫ ∫ -->
sin
n
-->
c
x
d
x
cos
m
− − -->
2
-->
c
x
(para
m
≠ ≠ -->
1
)
{\displaystyle \int {\frac {sin^{n}cx\;dx}{\cos ^{m}cx}}={\frac {\sin ^{n+1}cx}{c(m-1)\cos ^{m-1}cx}}-{\frac {n-m+2}{m-1}}\int {\frac {\sin ^{n}cx\;dx}{\cos ^{m-2}cx}}\qquad {\mbox{(para }}m\neq 1{\mbox{)}}}
tamén:
∫ ∫ -->
s
i
n
n
c
x
d
x
cos
m
-->
c
x
=
− − -->
sin
n
− − -->
1
-->
c
x
c
(
n
− − -->
m
)
cos
m
− − -->
1
-->
c
x
+
n
− − -->
1
n
− − -->
m
∫ ∫ -->
sin
n
− − -->
2
-->
c
x
d
x
cos
m
-->
c
x
(para
m
≠ ≠ -->
n
)
{\displaystyle \int {\frac {sin^{n}cx\;dx}{\cos ^{m}cx}}=-{\frac {\sin ^{n-1}cx}{c(n-m)\cos ^{m-1}cx}}+{\frac {n-1}{n-m}}\int {\frac {\sin ^{n-2}cx\;dx}{\cos ^{m}cx}}\qquad {\mbox{(para }}m\neq n{\mbox{)}}}
tamén:
∫ ∫ -->
s
i
n
n
c
x
d
x
cos
m
-->
c
x
=
sin
n
− − -->
1
-->
c
x
c
(
m
− − -->
1
)
cos
m
− − -->
1
-->
c
x
− − -->
n
− − -->
1
n
− − -->
1
∫ ∫ -->
sin
n
− − -->
1
-->
c
x
d
x
cos
m
− − -->
2
-->
c
x
(para
m
≠ ≠ -->
1
)
{\displaystyle \int {\frac {sin^{n}cx\;dx}{\cos ^{m}cx}}={\frac {\sin ^{n-1}cx}{c(m-1)\cos ^{m-1}cx}}-{\frac {n-1}{n-1}}\int {\frac {\sin ^{n-1}cx\;dx}{\cos ^{m-2}cx}}\qquad {\mbox{(para }}m\neq 1{\mbox{)}}}
∫ ∫ -->
cos
-->
c
x
d
x
sin
n
-->
c
x
=
− − -->
1
c
(
n
− − -->
1
)
sin
n
− − -->
1
-->
c
x
(para
n
≠ ≠ -->
1
)
{\displaystyle \int {\frac {\cos cx\;dx}{\sin ^{n}cx}}=-{\frac {1}{c(n-1)\sin ^{n-1}cx}}\qquad {\mbox{(para }}n\neq 1{\mbox{)}}}
∫ ∫ -->
cos
2
-->
c
x
d
x
sin
-->
c
x
=
1
c
(
cos
-->
c
x
+
ln
-->
|
tan
-->
c
x
2
|
)
{\displaystyle \int {\frac {\cos ^{2}cx\;dx}{\sin cx}}={\frac {1}{c}}\left(\cos cx+\ln \left|\tan {\frac {cx}{2}}\right|\right)}
∫ ∫ -->
cos
2
-->
c
x
d
x
sin
n
-->
c
x
=
− − -->
1
n
− − -->
1
(
cos
-->
c
x
c
sin
n
− − -->
1
-->
c
x
)
+
∫ ∫ -->
d
x
sin
n
− − -->
2
-->
c
x
)
(para
n
≠ ≠ -->
1
)
{\displaystyle \int {\frac {\cos ^{2}cx\;dx}{\sin ^{n}cx}}=-{\frac {1}{n-1}}\left({\frac {\cos cx}{c\sin ^{n-1}cx)}}+\int {\frac {dx}{\sin ^{n-2}cx}}\right)\qquad {\mbox{(para }}n\neq 1{\mbox{)}}}
∫ ∫ -->
cos
n
-->
c
x
d
x
sin
m
-->
c
x
=
− − -->
cos
n
+
1
-->
c
x
c
(
m
− − -->
1
)
sin
m
− − -->
1
-->
c
x
− − -->
n
− − -->
m
− − -->
2
m
− − -->
1
∫ ∫ -->
c
o
s
n
c
x
d
x
sin
m
− − -->
2
-->
c
x
(para
m
≠ ≠ -->
1
)
{\displaystyle \int {\frac {\cos ^{n}cx\;dx}{\sin ^{m}cx}}=-{\frac {\cos ^{n+1}cx}{c(m-1)\sin ^{m-1}cx}}-{\frac {n-m-2}{m-1}}\int {\frac {cos^{n}cx\;dx}{\sin ^{m-2}cx}}\qquad {\mbox{(para }}m\neq 1{\mbox{)}}}
tamén:
∫ ∫ -->
cos
n
-->
c
x
d
x
sin
m
-->
c
x
=
cos
n
− − -->
1
-->
c
x
c
(
n
− − -->
m
)
sin
m
− − -->
1
-->
c
x
+
n
− − -->
1
n
− − -->
m
∫ ∫ -->
c
o
s
n
− − -->
2
c
x
d
x
sin
m
-->
c
x
(para
m
≠ ≠ -->
n
)
{\displaystyle \int {\frac {\cos ^{n}cx\;dx}{\sin ^{m}cx}}={\frac {\cos ^{n-1}cx}{c(n-m)\sin ^{m-1}cx}}+{\frac {n-1}{n-m}}\int {\frac {cos^{n-2}cx\;dx}{\sin ^{m}cx}}\qquad {\mbox{(para }}m\neq n{\mbox{)}}}
tamén:
∫ ∫ -->
cos
n
-->
c
x
d
x
sin
m
-->
c
x
=
− − -->
cos
n
− − -->
1
-->
c
x
c
(
m
− − -->
1
)
sin
m
− − -->
1
-->
c
x
− − -->
n
− − -->
1
m
− − -->
1
∫ ∫ -->
c
o
s
n
− − -->
2
c
x
d
x
sin
m
− − -->
2
-->
c
x
(para
m
≠ ≠ -->
1
)
{\displaystyle \int {\frac {\cos ^{n}cx\;dx}{\sin ^{m}cx}}=-{\frac {\cos ^{n-1}cx}{c(m-1)\sin ^{m-1}cx}}-{\frac {n-1}{m-1}}\int {\frac {cos^{n-2}cx\;dx}{\sin ^{m-2}cx}}\qquad {\mbox{(para }}m\neq 1{\mbox{)}}}
Integrais que conteñen
sin
e
tan
Integrais que conteñen
cos
e
tan
∫ ∫ -->
tan
n
-->
c
x
d
x
cos
2
-->
c
x
=
1
c
(
n
+
1
)
tan
n
+
1
-->
c
x
(para
n
≠ ≠ -->
1
)
{\displaystyle \int {\frac {\tan ^{n}cx\;dx}{\cos ^{2}cx}}={\frac {1}{c(n+1)}}\tan ^{n+1}cx\qquad {\mbox{(para }}n\neq 1{\mbox{)}}}
Integrais que conteñen
sin
e
cot
∫ ∫ -->
cot
n
-->
c
x
d
x
s
i
n
2
c
x
=
1
c
(
n
+
1
)
cot
n
+
1
-->
c
x
(para
n
≠ ≠ -->
1
)
{\displaystyle \int {\frac {\cot ^{n}cx\;dx}{sin^{2}cx}}={\frac {1}{c(n+1)}}\cot ^{n+1}cx\qquad {\mbox{(para }}n\neq 1{\mbox{)}}}
Integrais que conteñen
cos
e
cot
Integrais que conteñen
tan
e
cot
Este artigo sobre
matemáticas
é, polo de agora, só un bosquexo.
Traballa nel
para axudar a contribuír a que a Galipedia
mellore e medre
.
Existen igualmente outros
artigos relacionados con este tema
nos que tamén podes contribuír.