Lei de Biot–Savart

Ilustración da ecuación de Biot-Savart.

A lei de Biot-Savart indica o campo magnético creado por correntes eléctricas estacionarias.

No caso das correntes que circulan por circuítos filiformes (ou pechados), a contribución dun elemento infinitesimal de lonxitude do circuíto percorrido por unha corrente crea unha contribución elemental de campo magnético, , no punto situado na posición que apunta o vector a unha distancia respecto de , que apunta en dirección á corrente I:

onde é a permeabilidade magnética do baleiro, e é un vector unitario.

No caso de correntes distribuídas en volumes, a contribución de cada elemento de volume da distribución vén dado por:

onde é a densidade de corrente no elemento de volume e é a posición relativa do punto no que queremos calcular o campo, respecto do elemento de volume en cuestión.

En ambos casos, o campo final resulta de aplicar o principio de superposición a través da expresión

Na que a integral se estende a todo o recinto que contén as fontes do campo.

A lei de Biot-Savart é fundamental en magnetostática tanto como a lei de Coulomb o é en electrostática.[1]

Lei de Biot-Savart xeneralizada

Nunha aproximación magnetostática, o campo magnético pode ser determinado se se coñece a densidade de corrente j:

onde:

é o elemento diferencial de volume.
é a constante magnética.

Diverxencia e rotacional de a partir da lei de Biot e Savart

A diverxencia e rotacional dun campo magnético estacionario pode calcularse por simple aplicación de tales operadores á lei de Biot e Savart.

Diverxencia

Aplicando o operador gradiente á expresión temos:

Dado que a diverxencia se aplica nun punto de avaliación do campo independente da integración de en todo o volume, o operador non afecta a . Aplicando a correspondente identidade vectorial:

Dado que:

Temos:

Rotacional

Aplicando o operador rotacional temos:

Ao igual que ocorría na diverxencia, o operador non afecta a xa que as súas coordenadas son as do dominio de integración e non as do punto de avaliación do rotacional. Aplicando a correspondente identidade vectorial e coñecendo que

Realizando a integración obtemos finalmente:

Nótese que o resultado anterior só é válido para campos magnéticos estacionarios. Se o campo magnético non fose estacionario aparecería á parte o termo debido á corrente de desprazamento.

Motivación histórica

Ilustración esquemática do experimento de Oersted.

Xa no século XVII había, dentro da comunidade científica, a sospeita de que fenómenos eléctricos e magnéticos puidesen estar relacionados. Iso motivou o físico Hans Christian Oersted a facer experimentos para observar o efecto da electricidade nunha agulla magnética. Entre 1819 e 1820, Oersted observou que ao pór un fío condutor dun circuíto eléctrico fechado paralelamente a unha agulla, esta sufría unha deflexión significativa en relación á súa dirección inicial. Oersted publicou os resultados do seu experimento en xullo de 1820, limitándose a unha descrición cualitativa do fenómeno.

O descubrimento de Oersted foi divulgado en setembro de 1820 na Academia Francesa, o que motivou diversos estudosos de Francia a repetir e estender os seus experimentos. A primeira análise precisa do fenómeno foi publicada polos físicos Jean-Baptiste Biot e Félix Savart, os cales conseguiron formular unha lei que describía matematicamente o campo magnético producido por unha distribución de corrente eléctrica.[2]

Notas

  1. Feynman et al. The Feynman Lectures on Physics vol. 2, 2ª ed., editora Bookman, 2008.
  2. Whittaker, E. T, A History of the Theories of Aether and Electricity, 1910.