Équation différentielle

Équation différentielle linéaire d'ordre un, avec a et b deux réels, et y une fonction, et y' sa dérivée. y' = ay + b
Équation différentielle linéaire d'ordre un, avec a et b deux réels, et y une fonction et y' sa dérivée

En mathématiques, une équation différentielle est une équation dont la ou les « inconnue(s) » sont des fonctions ; elle se présente sous la forme d'une relation entre ces fonctions inconnues et leurs dérivées successives. C'est un cas particulier d'équation fonctionnelle.

Une équation différentielle permet de modéliser des situations très diverses dans lesquelles la vitesse de variation d'une quantité a une relation déterminée à cette quantité, par exemple lui est proportionnelle. En physique on peut notamment grâce aux équations différentielles modéliser le nombre de noyaux instables à un instant précis grâce à la loi de décroissance radioactive ou encore modéliser l'évolution de la température d'un système incompressible en fonction du temps avec la loi de refroidissement de Newton en thermodynamique.

Les équations différentielles ont une histoire mondiale, et leur utilisation s'est étendue à tous les continents pour modéliser et comprendre une grande variété de phénomènes dynamiques dans les domaines scientifiques et techniques. Les avancées modernes, notamment l'utilisation d'outils informatiques pour résoudre numériquement des équations complexes, continuent d'élargir leur portée et leur application.


Histoire des équations différentielles

Renaissance

Des modélisations mathématiques étaient déjà en cours de développement à l'époque de la Renaissance. Et l'utilisation explicite des équations différentielles formelles a émergé avec le développement du calcul différentiel et intégral au XVIIe siècle, principalement avec les travaux de Newton et de Leibniz[1].

Temps modernes

À l'époque moderne, les équations différentielles ont joué un rôle central dans la modélisation et la compréhension des phénomènes dynamiques dans un large éventail de disciplines scientifiques et techniques. Les développements de ces domaines ont été rendu possibles par l'utilisation et la résolution de divers types d'équations différentielles[2].

Types d'équations différentielles

On distingue généralement deux types d'équations différentielles :

Sans plus de précision, le terme équation différentielle fait le plus souvent référence aux équations différentielles ordinaires.

Et il y a l'équation différentielle raide dont la sensibilité aux paramètres va rendre difficile la résolution par des méthodes numériques explicites.

On rencontre également d'autres types d'équations différentielles (liste non exhaustive) :

La théorie de Galois différentielle étudie les équations différentielles à l'aide de méthodes algébriques.

Notes et références

  1. (en) Dirk Jan Struik, A Source Book in Mathematics, 1200-1800, Harvard University Press, , p. 238-243; 271-281.
  2. (en) Florian Cajori, « The History of Notations of the Calculus », Annals of Mathematics, vol. 25, no 1,‎ , p. 1-10 (lire en ligne).

Voir aussi

Bibliographie

  • (en) Carl B. Boyer, The Concepts of the Calculus: A Critical and Historical Discussion of the Derivative and the Integral, Hafner Publishing Company,  ; republication : (en) Carl B. Boyer, The History of the Calculus and Its Conceptual Development, Dover, (lire en ligne).
  • (en) Dirk Jan Struik (ed.), A Source Book in Mathematics, 1200-1800, Cambridge, MA, Harvard University Press, (lire en ligne), p. 238-243; 271-281.
  • (en) Florian Cajori, « The History of Notations of the Calculus », Annals of Mathematics, vol. 25, no 1,‎ , p. 1-46 (lire en ligne).

Articles connexes

Liens externes

Read other articles:

Alice Elizabeth KoberLahirAlice Kober(1906-12-23)23 Desember 1906Kota New York, Amerika SerikatMeninggal16 Mei 1950(1950-05-16) (umur 43)Brooklyn, Kota New York, Amerika SerikatAlmamaterKolese HunterUniversitas ColumbiaPekerjaanIlmuwan Peradaban KlasikDikenal atasPenemu metode untuk menguraikan aksara Linear B, aksara yang menuliskan bahasa Yunani Mikenai, bentuk paling tua dari bahasa Yunani yang diketahui Alice Elizabeth Kober (23 Desember 1906 – 16 Mei 1950)[1]...

 

Need for Speed: Most Wanted Sampul Need for Speed: Most Wanted versi Xbox 360PublikasiPS2, XB, GC: AS: 15 November 2005PAL: 24 November 2005 Xbox 360: AS: 22 November 2005PAL: 2 Desember 2005 Telepon genggam: AS: 21 Desember 2005 PC dan PSP AS: 21 Desember 2005GenreBalapanLatar tempatNeed for Speed universe (en) Bahasa Daftar Inggris 60 Karakteristik teknisPlatformNintendo DS, Game Boy Advance, Xbox 360, Xbox, PlayStation 2, Windows, PlayStation Portable, PlayStation 3, Nintendo GameCube dan ...

 

Angus DeatonAngus DeatonLahirAngus Stewart Deaton19 Oktober 1945 (umur 78)Edinburgh, Scotland, UKKebangsaanInggris, Amerika SerikatPendidikanFettes CollegeAlmamaterFitzwilliam College, CambridgePenghargaanNobel Memorial Prize in Economic Sciences (2015)Karier ilmiahBidangMikroekonomiInstitusiPrinceton UniversityDisertasiModels of consumer demand and their application to the United Kingdom (1975) Angus Stewart Deaton (lahir 19 Oktober 1945) adalah seorang pakar mikroekonomi dan prof...

Sampul Tinsel Town Rebellion adalah album ganda oleh Frank Zappa, diterbitkan pada 1981. Daftar lagu Fine Girl – 3:31 Easy Meat – 9:19 For the Young Sophisticate – 2:48 Love of My Life – 2:15 I Ain't Got No Heart – 1:59 Panty Rap – 4:35 Tell Me You Love Me – 2:07 Now You See It- Now You Don't – 4:54 Dance Contest – 2:58 The Blue Light – 5:27 Tinsel Town Rebellion – 4:35 Pick Me, I'm Clean – 5:07 Bamboozled by Love – 5:46 Brown Shoes Don't Make It – 7:14 Peaches III...

 

Tionghoa Taipei padaOlimpiadeBendera Olimpiade Tionghoa TaipeiKode IOCTPEKONKomite Olimpiade Tionghoa Taipei (Taiwan)Situs webwww.tpenoc.net (dalam bahasa Mandarin)Medali 5 8 13 Total 26 Penampilan Musim Panas195619601964196819721976–19801984198819921996200020042008201220162020Penampilan Musim Dingin19721976198019841988199219941998200220062010201420182022Penampilan terkait lainnya Republik Tiongkok (1932–76) Berikut ini adalah daftar pembawa bendera yang mewakili Tiong...

 

Questa voce sull'argomento stagioni delle società calcistiche italiane è solo un abbozzo. Contribuisci a migliorarla secondo le convenzioni di Wikipedia. Segui i suggerimenti del progetto di riferimento. Voce principale: Unione Sportiva Fiumana. Unione Sportiva FiumanaStagione 1938-1939Sport calcio Squadra Fiumana Allenatore Marcello Mihalich Presidente Alessandro Andreanelli e Aldo Tuchtan Serie C4º posto nel girone A. Coppa ItaliaPrimo turno eliminatorio. 1937-1938 1939-1940 S...

Formation with units arranged diagonally For other uses, see Echelon (disambiguation). This article needs additional citations for verification. Please help improve this article by adding citations to reliable sources. Unsourced material may be challenged and removed.Find sources: Echelon formation – news · newspapers · books · scholar · JSTOR (June 2009) (Learn how and when to remove this message) Four OS2U Kingfisher airplanes flying in right echelon...

 

Romanian football club Not to be confused with ACS Gauss Bacău or CSM Bacău (football). Football clubFCM BacăuFull nameAsociația Sportivă a SuporterilorFCM 1950 BacăuNickname(s)Băcăuanii(The People from Bacău County)Taurii furioși (The Mad Bulls)Galben-albaștrii(The Yellow and Blues)Short nameBacăuFounded1950Dissolved2020 Home colours Away colours Asociația Sportivă a Suporterilor FCM 1950 Bacău (also known as ASS FCM 1950 Bacău, FCM 1950 Bacău or FCM Bacău) is a Romanian fo...

 

American television miniseries Star Wars: Obi-Wan Kenobi redirects here. For the video game, see Star Wars: Obi-Wan. Obi-Wan KenobiGenre Action-adventure Science fiction Space opera Based onStar Warsby George LucasShowrunnerJoby HaroldDirected byDeborah ChowStarringEwan McGregorTheme music composer John Williams William Ross (adaptation) ComposerNatalie HoltCountry of originUnited StatesOriginal languageEnglishNo. of episodes6ProductionExecutive producers Deborah Chow Ewan McGregor Kathleen K...

Thirteen Uncollected Stories by John Cheever First edition coverAuthorJohn CheeverCountryUnited StatesLanguageEnglishPublisherAcademy Chicago PublishersPublication date1994Media typePrint (hardcover)Pages227ISBN0-89733-405-1Dewey Decimal813/.52LC ClassPS3505.H6428A6 Thirteen Uncollected Stories by John Cheever is a volume of short fiction by John Cheever published in 1994 by Academy Chicago Publishers.[1] Most of the works in this collection were written between 1931 and 19...

 

Ski jumpingat the XV Olympic Winter GamesPictogram for ski jumpingVenueCanada Olympic ParkDatesFebruary 14–24No. of events3Competitors65 from 19 nations← 19841992 → Ski jumping at the1988 Winter OlympicsNormal hillmenLarge hillmenTeammenvte Ski jumping at the 1988 Winter Olympics consisted of three events held from 14 February to 24 February, taking place at Canada Olympic Park.[1] The Calgary Games featured the addition of a new event, the first pro...

 

American professional soccer club Soccer clubChicago Red StarsFounded2006; 18 years ago (2006)StadiumSeatGeek StadiumBridgeview, IllinoisCapacity20,000Majority ownerLaura RickettsChairpersonLaura RickettsHead coachLorne DonaldsonLeagueNational Women's Soccer League2023Regular season: 12th of 12Playoffs: DNQWebsiteClub website Home colors Away colors Current season The Chicago Red Stars are a professional women's soccer club based in Bridgeview, Illinois, a suburb of Chicago....

For other uses of the names Bitter Lake, see Bitter Lake (disambiguation). Protected wetland area in Chavez County, New Mexico. Bitter Lake National Wildlife RefugeIUCN category IV (habitat/species management area)LocationChaves County, New Mexico, United StatesNearest cityRoswell, NMCoordinates33°31′00″N 104°24′30″W / 33.51667°N 104.40833°W / 33.51667; -104.40833Area24,536 acres (99.29 km2)Established1937Governing bodyU.S. Fish & Wildlif...

 

List of events ← 1828 1827 1826 1825 1824 1829 in Ireland → 1830 1831 1832 1833 1834 Centuries: 17th 18th 19th 20th 21st Decades: 1800s 1810s 1820s 1830s 1840s See also:1829 in the United KingdomOther events of 1829 List of years in Ireland Events from the year 1829 in Ireland. Events 13 April – the Roman Catholic Relief Act, granting Catholic Emancipation, becomes law, thanks to Daniel O'Connell and the Catholic Association.[1] Roman Catholics are eligible to sit in the...

 

Mine in Western Australia Mt Webber mineLocationMt Webber mineLocation in Western AustraliaLocationShire of East PilbaraStateWestern AustraliaCountryAustraliaCoordinates21°32′13″S 119°17′20″E / 21.5369°S 119.2888°E / -21.5369; 119.2888ProductionProductsIron oreProduction9 million tonnes (20 billion pounds) per annumHistoryOpened2014OwnerCompanyAtlas IronWebsitehttps://www.atlasiron.com.au/ The Mt Webber mine is an iron ore mine operated by Atlas I...

Abbasid-era library in Baghdad, modern-day Iraq This article is about the Abbasid library in Baghdad, Iraq. For the Fatimid library in Cairo, Egypt, see House of Knowledge. House of Wisdomبَيْت الْحِكْمَة‎Scholars at the Abbasid library (Maqamat al-Hariri)Illustration by Yahya ibn Mahmud al-Wasiti, 1237LocationBaghdad, Abbasid Caliphate (now Iraq)TypeLibraryEstablishedc. 8th century CEDissolved1258 (Mongol conquest) The House of Wisdom (Arabic: بَيْت الْحِ...

 

Europamästerskapet i ishockey 1910Datum10–12 januari 1910DeltagareNationer ihuvudmästerskap4VärdskapLand SchweizOrtLes Avants, VaudPlaceringar Guld Storbritannien (1:a titeln) Silver Tyskland Brons BelgienTyskland 1911 → Europamästerskapet i ishockey 1910 var det första Europamästerskapet i ishockey för landslag som arrangerades av IIHF. Turneringen var den första internationella turneringen för landslag, och spelades i Les Avants utanför Montreux i Schwe...

 

Mass spectrometer An Alpha calutron tank removed from the magnet for recovery of uranium-235 A calutron is a mass spectrometer originally designed and used for separating the isotopes of uranium. It was developed by Ernest Lawrence during the Manhattan Project and was based on his earlier invention, the cyclotron. Its name was derived from California University Cyclotron, in tribute to Lawrence's institution, the University of California, where it was invented. Calutrons were used in the indu...

Cet article est une ébauche concernant Paris. Vous pouvez partager vos connaissances en l’améliorant (comment ?) selon les recommandations des projets correspondants. 19e arrtPassage Susan Sontag Le passage en juin 2021. Situation Arrondissement 19e Quartier Pont-de-Flandre Début 189, boulevard Macdonald Fin 60, rue Cesária-Évora Historique Dénomination 2014 Ancien nom Voie ER/19 Géolocalisation sur la carte : Paris Passage Susan Sontag Géolocalisation sur la carte&#...

 

天球赤道目前對黃道平面傾斜約23.44°。這張圖顯示地球的軌道傾角、自轉軸和軌道平面之間的關係。 天球赤道(英語:celestial equator)是天球上一個假想的大圓,與地球赤道有著共同平面。這是以赤道座標系統為基礎的參考平面,換句話說,天球赤道是地球赤道投影在太空的影像[1]。由於地球相對於黃道面的軌道傾角,天球赤道目前與黃道的傾斜角度大約23.44°,但在�...